高能物理 - 理论
[提交于 2020年12月7日
(v1)
,最后修订 2021年4月8日 (此版本, v2)]
标题: 低维引力中的守恒性和可积性
标题: Conservation and Integrability in Lower-Dimensional Gravity
摘要: 我们研究了在无穷远处二维和三维引力理论中的电荷守恒和可积性问题。 分析是在一个框架内进行的,该框架允许我们同时处理渐近局部AdS和渐近局部平直时空。 在二维情况下,我们从一个包含JT和CGHS标量引力理论的一般模型类开始,而在三维情况下,我们在爱因斯坦引力中进行研究。 在两种情况下,我们构建了相空间,并通过全息重整化程序对辛结构中出现的发散进行正则化。 我们表明电荷表达式通常是有限的,但不守恒,可以通过对渐近对称参数的场依赖重定义使其可积。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.