Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2205.04341

帮助 | 高级搜索

数学 > 统计理论

arXiv:2205.04341 (math)
[提交于 2022年5月9日 ]

标题: 布拉德利-特里模型的约束识别的渐近比较

标题: Asymptotic comparison of identifying constraints for Bradley-Terry models

Authors:Weichen Wu, Brian W. Junker, Nynke M.D. Niezink
摘要: 布拉德利-特雷模型广泛用于成对比较数据分析。本文分析了布拉德利-特雷模型在逻辑参数化下最大似然估计量的渐近行为,适用于一类广义线性可识别约束条件。我们证明了要求所有被比较对象的布拉德利-特雷得分总和为零的约束条件可以最小化估计得分方差之和,并建议在实际应用中使用该约束条件。
摘要: The Bradley-Terry model is widely used for pairwise comparison data analysis. In this paper, we analyze the asymptotic behavior of the maximum likelihood estimator of the Bradley-Terry model in its logistic parameterization, under a general class of linear identifiability constraints. We show that the constraint requiring the Bradley-Terry scores for all compared objects to sum to zero minimizes the sum of the variances of the estimated scores, and recommend using this constraint in practice.
主题: 统计理论 (math.ST) ; 方法论 (stat.ME)
引用方式: arXiv:2205.04341 [math.ST]
  (或者 arXiv:2205.04341v1 [math.ST] 对于此版本)
  https://doi.org/10.48550/arXiv.2205.04341
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Weichen Wu [查看电子邮件]
[v1] 星期一, 2022 年 5 月 9 日 14:41:35 UTC (137 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.ST
< 上一篇   |   下一篇 >
新的 | 最近的 | 2022-05
切换浏览方式为:
math
stat
stat.ME
stat.TH

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号