广义相对论与量子宇宙学
[提交于 2023年9月30日
(v1)
,最后修订 2024年1月4日 (此版本, v2)]
标题: 哈特尔-霍金无边界提案和霍拉瓦-利夫希茨引力
标题: Hartle-Hawking No-boundary Proposal and Hořava-Lifshitz Gravity
摘要: 我们研究在霍拉瓦-利夫希茨引力框架下的哈特尔-霍金无边界提议。前者是一个描述宇宙量子创生的重要假说,而后者是一种潜在的量子引力理论,至少在所谓的可投影版本中,它确保了可重整化和单位性。为了简化,我们专注于一个由一组局部宇宙组成的全局宇宙,每个局部宇宙都是闭合的、均匀的和各向同性的。尽管将无边界提议应用于霍拉瓦-利夫希茨引力并不直接,但我们证明可以利用量子引力的洛伦兹路径积分公式在霍拉瓦-利夫希茨引力中提出该提议。在可投影的霍拉瓦-利夫希茨引力中,全局宇宙的无边界波函数不可避免地包含由“暗物质作为积分常数”引起的不同局部宇宙之间的纠缠。另一方面,在不可投影版本中,全局宇宙的无边界波函数只是每个局部宇宙波函数的直接乘积。然后我们讨论在狄利克雷和罗宾边界条件下无边界波函数是如何提出的。对于狄利克雷边界条件,我们指出由于高维算符其有效作用量发散,但原则上可以通过考虑重整化群流来缓解这个问题。然而,利用皮卡德-列夫谢茨理论来确定相关临界点并执行复数时间间隔积分,我们发现只能得到隧穿波函数,正如广义相对论的情况一样。另一方面,对于初始超曲面上具有特定虚数哈勃膨胀率的罗宾边界条件,可以在霍拉瓦-利夫希茨引力中获得无边界波函数。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.