Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2310.16599

帮助 | 高级搜索

数学 > 交换代数

arXiv:2310.16599 (math)
[提交于 2023年10月25日 (v1) ,最后修订 2023年11月1日 (此版本, v2)]

标题: 局部唯一因子分解域上Ext模的消失性

标题: On the vanishing of Ext modules over a local unique factorization domain with an isolated singularity

Authors:Kaito Kimura, Justin Lyle, Yuya Otake, Ryo Takahashi
摘要: 本文提供了一种方法,从给定的诺特完备等特征局部环中得到一个具有孤立奇点的诺特等特征局部唯一因子分解整环,并保持某些性质。 这被应用于研究Ext模的(非)消没性。 证明了存在一个具有孤立奇点的Gorenstein局部UFD$A$,使得$\operatorname{Ext}_A^{\gg0}(M,N)=0$不蕴含$\operatorname{Ext}_A^{\gg0}(N,M)=0$,一个具有孤立奇点的Gorenstein局部UFD$B$,使得$\operatorname{Tor}_{>0}^B(M,N)=0$不蕴含$\operatorname{depth}(M\otimes_B N)=\operatorname{depth} M+\operatorname{depth} N-\operatorname{depth} B$,并且一个具有孤立奇点的Cohen-Macaulay局部UFD$C$,使得$\operatorname{Ext}_C^{>0}(M,C)=0$不蕴含$M$的完全可缩性。
摘要: This paper provides a method to get a noetherian equicharacteristic local UFD with an isolated singularity from a given noetherian complete equicharacteristic local ring, preserving certain properties. This is applied to invesitgate the (non)vanishing of Ext modules. It is proved that there exist a Gorenstein local UFD $A$ having an isolated singularity such that $\operatorname{Ext}_A^{\gg0}(M,N)=0$ does not imply $\operatorname{Ext}_A^{\gg0}(N,M)=0$, a Gorenstein local UFD $B$ having an isolated singularity such that $\operatorname{Tor}_{>0}^B(M,N)=0$ does not imply $\operatorname{depth}(M\otimes_B N)=\operatorname{depth} M+\operatorname{depth} N-\operatorname{depth} B$, and a Cohen-Macaulay local UFD $C$ having an isolated singularity such that $\operatorname{Ext}_C^{>0}(M,C)=0$ does not imply the total reflexivity of $M$.
评论: v1:7页。v2:10页,增加了深度公式的结果
主题: 交换代数 (math.AC)
MSC 类: 13D07, 13F15
引用方式: arXiv:2310.16599 [math.AC]
  (或者 arXiv:2310.16599v2 [math.AC] 对于此版本)
  https://doi.org/10.48550/arXiv.2310.16599
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Kaito Kimura [查看电子邮件]
[v1] 星期三, 2023 年 10 月 25 日 12:42:59 UTC (11 KB)
[v2] 星期三, 2023 年 11 月 1 日 02:48:51 UTC (16 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.AC
< 上一篇   |   下一篇 >
新的 | 最近的 | 2023-10
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号