Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > hep-th > arXiv:2402.00105v1

帮助 | 高级搜索

高能物理 - 理论

arXiv:2402.00105v1 (hep-th)
[提交于 2024年1月31日 ]

标题: 场论和弦论中一类没有群作用的选择规则

标题: On a class of selection rules without group actions in field theory and string theory

Authors:Justin Kaidi, Yuji Tachikawa, Hao Y. Zhang
摘要: 我们讨论了一类选择规则,这些规则满足以下条件:i) 不来自场的群作用;ii) 在微扰理论的树级上精确成立;iii) 随着圈阶数的提高而越来越被违反;iv) 最终会归结为与普通群对称性相关的选择规则。 我们从基本的场论例子开始,其中场由共轭类而非群表示标记,并讨论了使用融合代数或超群的一般化情况。 我们还讨论了这类选择规则如何在弦理论中自然出现,例如对于非阿贝尔 orbifold 或其他具有非可逆世界面对称性的案例。
摘要: We discuss a class of selection rules which i) do not come from group actions on fields, ii) are exact at tree level in perturbation theory, iii) are increasingly violated as the loop order is raised, and iv) eventually reduce to selection rules associated with an ordinary group symmetry. We start from basic field-theoretical examples in which fields are labeled by conjugacy classes rather than representations of a group, and discuss generalizations using fusion algebras or hypergroups. We also discuss how such selection rules arise naturally in string theory, such as for non-Abelian orbifolds or other cases with non-invertible worldsheet symmetries.
评论: 22页+三个附录
主题: 高能物理 - 理论 (hep-th) ; 高能物理 - 现象学 (hep-ph)
引用方式: arXiv:2402.00105 [hep-th]
  (或者 arXiv:2402.00105v1 [hep-th] 对于此版本)
  https://doi.org/10.48550/arXiv.2402.00105
通过 DataCite 发表的 arXiv DOI
期刊参考: SciPost Phys. 17, 169 (2024)
相关 DOI: https://doi.org/10.21468/SciPostPhys.17.6.169
链接到相关资源的 DOI

提交历史

来自: Justin Kaidi [查看电子邮件]
[v1] 星期三, 2024 年 1 月 31 日 19:00:01 UTC (42 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
hep-th
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-02
切换浏览方式为:
hep-ph

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号