Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > econ > arXiv:2503.05481

帮助 | 高级搜索

经济学 > 一般经济学

arXiv:2503.05481 (econ)
[提交于 2025年3月7日 ]

标题: 特定领域大型语言模型的最大幻觉标准

标题: Maximum Hallucination Standards for Domain-Specific Large Language Models

Authors:Tingmingke Lu
摘要: 大型语言模型(LLMs)常常生成不准确但听起来可信的内容,这被称为幻觉。 这种LLMs的固有特性带来了重大风险,尤其是在关键领域。 我将LLMs视为一类新的工程产品,将幻觉视为产品属性。 我证明了在LLMs幻觉和错误信息外部性认知不完善的情况下,当LLMs幻觉的最大可接受水平根据两个领域特定因素变化时,净福利会提高:对减少LLMs幻觉的支付意愿以及与错误信息相关的边际损害。
摘要: Large language models (LLMs) often generate inaccurate yet credible-sounding content, known as hallucinations. This inherent feature of LLMs poses significant risks, especially in critical domains. I analyze LLMs as a new class of engineering products, treating hallucinations as a product attribute. I demonstrate that, in the presence of imperfect awareness of LLM hallucinations and misinformation externalities, net welfare improves when the maximum acceptable level of LLM hallucinations is designed to vary with two domain-specific factors: the willingness to pay for reduced LLM hallucinations and the marginal damage associated with misinformation.
主题: 一般经济学 (econ.GN)
引用方式: arXiv:2503.05481 [econ.GN]
  (或者 arXiv:2503.05481v1 [econ.GN] 对于此版本)
  https://doi.org/10.48550/arXiv.2503.05481
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Tingmingke Lu [查看电子邮件]
[v1] 星期五, 2025 年 3 月 7 日 14:51:29 UTC (12 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
econ.GN
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-03
切换浏览方式为:
econ
q-fin
q-fin.EC

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号