数学 > 代数几何
[提交于 2025年3月8日
]
标题: 半代数Lipschitz等价多项式函数
标题: Semialgebraic Lipschitz equivalence polynomial functions
摘要: We investigate the classification of quasihomogeneous polynomials in two variables with real coefficients under semialgebraic bi-Lipschitz equivalence in a neighborhood of the origin in ${\mathbb R}^2$. Building on the work of Birbrair, Fernandes, and Panazzolo, our approach is based on reducing the problem to the Lipschitz classification of associated single-variable polynomial functions, called height functions. We establish conditions under which semialgebraic bi-Lipschitz equivalence of quasihomogeneous polynomials corresponds to the Lipschitz equivalence of their height functions. To achieve this, we develop the theory of $\beta$-transforms and inverse $\beta$-transforms. As an application, we examine a family of quasihomogeneous polynomials previously used by Henry and Parusiński to show that the bi-Lipschitz equivalence of analytic function germs $({\mathbb R}^2,0)\rightarrow({\mathbb R},0)$ admits continuous moduli. Our results show that semialgebraic bi-Lipschitz equivalence of real quasihomogeneous polynomials in two variables also admits continuous moduli.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.