Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:2503.19347

帮助 | 高级搜索

计算机科学 > 计算机视觉与模式识别

arXiv:2503.19347 (cs)
[提交于 2025年3月25日 ]

标题: 停止绕圈子! 在投影梯度下降中提前退出

标题: Stop Walking in Circles! Bailing Out Early in Projected Gradient Descent

Authors:Philip Doldo, Derek Everett, Amol Khanna, Andre T Nguyen, Edward Raff
摘要: Projected Gradient Descent (PGD) under the $L_\infty$ ball has become one of the defacto methods used in adversarial robustness evaluation for computer vision (CV) due to its reliability and efficacy, making a strong and easy-to-implement iterative baseline. However, PGD is computationally demanding to apply, especially when using thousands of iterations is the current best-practice recommendation to generate an adversarial example for a single image. In this work, we introduce a simple novel method for early termination of PGD based on cycle detection by exploiting the geometry of how PGD is implemented in practice and show that it can produce large speedup factors while providing the \emph{精确的} same estimate of model robustness as standard PGD. This method substantially speeds up PGD without sacrificing any attack strength, enabling evaluations of robustness that were previously computationally intractable.
摘要: Projected Gradient Descent (PGD) under the $L_\infty$ ball has become one of the defacto methods used in adversarial robustness evaluation for computer vision (CV) due to its reliability and efficacy, making a strong and easy-to-implement iterative baseline. However, PGD is computationally demanding to apply, especially when using thousands of iterations is the current best-practice recommendation to generate an adversarial example for a single image. In this work, we introduce a simple novel method for early termination of PGD based on cycle detection by exploiting the geometry of how PGD is implemented in practice and show that it can produce large speedup factors while providing the \emph{exact} same estimate of model robustness as standard PGD. This method substantially speeds up PGD without sacrificing any attack strength, enabling evaluations of robustness that were previously computationally intractable.
评论: 将出现在2025年IEEE/CVF计算机视觉与模式识别会议(CVPR)上
主题: 计算机视觉与模式识别 (cs.CV) ; 机器学习 (cs.LG); 机器学习 (stat.ML)
引用方式: arXiv:2503.19347 [cs.CV]
  (或者 arXiv:2503.19347v1 [cs.CV] 对于此版本)
  https://doi.org/10.48550/arXiv.2503.19347
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Edward Raff [查看电子邮件]
[v1] 星期二, 2025 年 3 月 25 日 04:51:44 UTC (1,424 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
查看许可
当前浏览上下文:
cs.CV
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-03
切换浏览方式为:
cs
cs.LG
stat
stat.ML

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号