Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > quant-ph > arXiv:2504.01785

帮助 | 高级搜索

量子物理

arXiv:2504.01785 (quant-ph)
[提交于 2025年4月2日 ]

标题: 时间最优单标量控制在单位动力学的量子比特上

标题: Time-optimal single-scalar control on a qubit of unitary dynamics

Authors:Chungwei Lin, Qi Ding, Petros T. Boufounos, Yanting Ma, Yebin Wang, Dries Sels, Chih-Chun Chien
摘要: Optimal control theory is applied to analyze the time-optimal solution with a single scalar control knob in a two-level quantum system without quantum decoherence. Emphasis is \change{placed} on the dependence on the maximum control strength $u_\text{max}$. General constraints on the optimal protocol are derived and used to rigorously parameterize the time-optimal solution. Two concrete problems are investigated. For generic state preparation problems, both multiple bang-bang and bang-singular-bang are legitimate and should be considered. Generally, the optimal is bang-bang for small $u_\text{max}$, and there exists a state-dependent critical amplitude above which singular control emerges. For the X-gate operation of a qubit, the optimal protocol \change{is exclusively} multiple bang-bang. The minimum gate time is about 80% of that based on the resonant Rabi $\pi$-pulse over a wide range of control strength; in the $u_\text{max} \rightarrow 0$ limit this ratio is derived to be $\pi/4$. To develop practically feasible protocols, we present methods to smooth the abrupt changes in the bang-bang control while preserving perfect gate fidelity. \change{The presence of bang-bang segments in the time-optimal protocol}表明高频分量和完整的计算(而不是通常采用的旋转波近似)对于最终的量子速度极限是必不可少的。
摘要: Optimal control theory is applied to analyze the time-optimal solution with a single scalar control knob in a two-level quantum system without quantum decoherence. Emphasis is \change{placed} on the dependence on the maximum control strength $u_\text{max}$. General constraints on the optimal protocol are derived and used to rigorously parameterize the time-optimal solution. Two concrete problems are investigated. For generic state preparation problems, both multiple bang-bang and bang-singular-bang are legitimate and should be considered. Generally, the optimal is bang-bang for small $u_\text{max}$, and there exists a state-dependent critical amplitude above which singular control emerges. For the X-gate operation of a qubit, the optimal protocol \change{is exclusively} multiple bang-bang. The minimum gate time is about 80\% of that based on the resonant Rabi $\pi$-pulse over a wide range of control strength; in the $u_\text{max} \rightarrow 0$ limit this ratio is derived to be $\pi/4$. To develop practically feasible protocols, we present methods to smooth the abrupt changes in the bang-bang control while preserving perfect gate fidelity. \change{The presence of bang-bang segments in the time-optimal protocol} indicates that the high-frequency components and a full calculation (instead of the commonly adopted Rotating Wave Approximation) are essential for the ultimate quantum speed limit.
评论: 7个数字
主题: 量子物理 (quant-ph)
引用方式: arXiv:2504.01785 [quant-ph]
  (或者 arXiv:2504.01785v1 [quant-ph] 对于此版本)
  https://doi.org/10.48550/arXiv.2504.01785
通过 DataCite 发表的 arXiv DOI
期刊参考: PhysRevA.111.042602 (2025)
相关 DOI: https://doi.org/10.1103/PhysRevA.111.042602
链接到相关资源的 DOI

提交历史

来自: Chungwei Lin [查看电子邮件]
[v1] 星期三, 2025 年 4 月 2 日 14:48:50 UTC (1,365 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
quant-ph
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-04

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号