Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > stat > arXiv:2505.00110

帮助 | 高级搜索

统计学 > 机器学习

arXiv:2505.00110 (stat)
[提交于 2025年4月30日 ]

标题: 关于深度Heaviside网络的表达能力

标题: On the expressivity of deep Heaviside networks

Authors:Insung Kong, Juntong Chen, Sophie Langer, Johannes Schmidt-Hieber
摘要: 我们证明深度Heaviside网络(DHNs)的表达能力有限,但可以通过加入跳过连接或具有线性激活函数的神经元来克服这一点。我们为这些网络类提供了Vapnik-Chervonenkis(VC)维数和逼近速率的上下界。作为应用,我们推导了非参数回归模型中DHN拟合的统计收敛速率。
摘要: We show that deep Heaviside networks (DHNs) have limited expressiveness but that this can be overcome by including either skip connections or neurons with linear activation. We provide lower and upper bounds for the Vapnik-Chervonenkis (VC) dimensions and approximation rates of these network classes. As an application, we derive statistical convergence rates for DHN fits in the nonparametric regression model.
评论: 61页,16幅图
主题: 机器学习 (stat.ML) ; 机器学习 (cs.LG); 数值分析 (math.NA)
引用方式: arXiv:2505.00110 [stat.ML]
  (或者 arXiv:2505.00110v1 [stat.ML] 对于此版本)
  https://doi.org/10.48550/arXiv.2505.00110
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Insung Kong [查看电子邮件]
[v1] 星期三, 2025 年 4 月 30 日 18:25:05 UTC (100 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
查看许可
当前浏览上下文:
stat.ML
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-05
切换浏览方式为:
cs
cs.LG
cs.NA
math
math.NA
stat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号