非线性科学 > 模式形成与孤子
[提交于 2025年5月5日
]
标题: 一般双分量长波短波共振相互作用系统:非退化矢量孤子及其碰撞动力学
标题: General two-component long-wave short-wave resonance interaction system: Non-degenerate vector solitons and their collision dynamics
摘要: 在本文中,我们展示了非退化亮孤子的出现,并总结了它们在一个完全可积的两成分长波短波共振相互作用模型中的几个有趣特征,该模型具有非线性系数的一般形式。 通过经典的hirota双线性方法,我们为这个LSRI模型获得了全非退化的$N$孤子解,以gram行列式形式表示。 根据速度条件的选择,所获得的非退化基本孤子被分类为两种类型,即($1,1,1$)和($1,1,2$)非退化单孤子。 然后我们展示基本($1,1,1$)非退化孤子表现出新的轮廓结构,包括双峰、特殊平顶和常规单峰轮廓,而($1,1,2$)非退化孤子允许类似于KP线孤子与短茎结构相互作用的倾斜碰撞行为。 进行了详细的渐近分析以研究($1,1,1$)非退化孤子的长时间行为,结果显示它们经历了形状保持和形状变化的碰撞。 然而,我们的分析确认这些孤子之间的形状变化碰撞在时间坐标适当偏移后变得具有弹性。 此外,我们确定($1,1,2$)非退化孤子也经历弹性碰撞。 此外,我们还研究了在退化孤子与非退化孤子($1,1,1$)碰撞过程中呼吸现象的形成或抑制。 为了完整性,我们还指出了完全退化孤子之间的碰撞情形。 本文中提出的结果广泛适用于玻色-爱因斯坦凝聚体、非线性光学、等离子体物理以及其他相关领域。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.