Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > eess > arXiv:2505.22609

帮助 | 高级搜索

电气工程与系统科学 > 图像与视频处理

arXiv:2505.22609 (eess)
[提交于 2025年5月28日 ]

标题: 使用深度学习分类方法的胸病检测在 X 光图像中的应用

标题: Chest Disease Detection In X-Ray Images Using Deep Learning Classification Method

Authors:Alanna Hazlett, Naomi Ohashi, Timothy Rodriguez, Sodiq Adewole
摘要: 在这项工作中,我们研究了多种分类模型在将胸透X光片分类为COVID-19、肺炎、结核病(TB)和正常病例四种类别的性能。 我们利用了最先进的预训练卷积神经网络(CNNs)的迁移学习技术。 我们在标记的医学X光片上微调了这些预训练架构。 初步结果显示,在精度、召回率和F1分数等关键分类指标方面具有高准确率和强大性能。 我们应用了梯度加权类激活映射(Grad-CAM)以提高模型的可解释性,为分类决策提供可视化解释,从而提高临床应用中的信任和透明度。
摘要: In this work, we investigate the performance across multiple classification models to classify chest X-ray images into four categories of COVID-19, pneumonia, tuberculosis (TB), and normal cases. We leveraged transfer learning techniques with state-of-the-art pre-trained Convolutional Neural Networks (CNNs) models. We fine-tuned these pre-trained architectures on a labeled medical x-ray images. The initial results are promising with high accuracy and strong performance in key classification metrics such as precision, recall, and F1 score. We applied Gradient-weighted Class Activation Mapping (Grad-CAM) for model interpretability to provide visual explanations for classification decisions, improving trust and transparency in clinical applications.
主题: 图像与视频处理 (eess.IV) ; 计算机视觉与模式识别 (cs.CV); 机器学习 (cs.LG)
引用方式: arXiv:2505.22609 [eess.IV]
  (或者 arXiv:2505.22609v1 [eess.IV] 对于此版本)
  https://doi.org/10.48550/arXiv.2505.22609
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Sodiq Adewole [查看电子邮件]
[v1] 星期三, 2025 年 5 月 28 日 17:24:33 UTC (7,011 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
eess.IV
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-05
切换浏览方式为:
cs
cs.CV
cs.LG
eess

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号