Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > quant-ph > arXiv:2507.00400

帮助 | 高级搜索

量子物理

arXiv:2507.00400 (quant-ph)
[提交于 2025年7月1日 ]

标题: 无辅助量子比特的近似多控制单量子比特门的对数深度分解

标题: Logarithmic Depth Decomposition of Approximate Multi-Controlled Single-Qubit Gates Without Ancilla Qubits

Authors:Jefferson D. S. Silva, Adenilton J. da Silva
摘要: 量子算子的合成涉及将通用量子门分解为给定量子设备支持的门集。 多控制门是这一过程中的关键组件。 在本工作中,我们提出了使用单个辅助量子位的多控制NOT门的改进分解方法,其深度为对数级,相比之前的工作,还减少了电路深度中的常数因子。 我们通过识别条件清洁量子位的存在,优化了之前提出的多目标、多控制特殊酉SU(2)门的分解方法。 此外,我们引入了无需使用辅助量子位的多控制近似酉U(2)门的最佳已知分解方法。 该方法在保持可调误差参数的同时显著减少了整体电路深度和CNOT数量,为合成大型控制酉门提供了更高效和可扩展的解决方案。 我们的方法特别适用于NISQ和容错量子架构。 本项目开发的所有软件均可免费获得。
摘要: The synthesis of quantum operators involves decomposing general quantum gates into the gate set supported by a given quantum device. Multi-controlled gates are essential components in this process. In this work, we present improved decompositions of multi-controlled NOT gates with logarithmic depth using a single ancilla qubit, while also reducing the constant factors in the circuit depth compared to previous work. We optimize a previously proposed decomposition of multi-target, multi-controlled special unitary SU(2) gates by identifying the presence of a conditionally clean qubit. Additionally, we introduce the best-known decomposition of multi-controlled approximate unitary U(2) gates without using ancilla qubits. This approach significantly reduces the overall circuit depth and CNOT count while preserving an adjustable error parameter, yielding a more efficient and scalable solution for synthesizing large controlled-unitary gates. Our method is particularly suitable for both NISQ and fault-tolerant quantum architectures. All software developed in this project is freely available.
评论: 6页,10图
主题: 量子物理 (quant-ph) ; 计算复杂性 (cs.CC)
引用方式: arXiv:2507.00400 [quant-ph]
  (或者 arXiv:2507.00400v1 [quant-ph] 对于此版本)
  https://doi.org/10.48550/arXiv.2507.00400
通过 DataCite 发表的 arXiv DOI(待注册)

提交历史

来自: Jefferson Deyvis Dos Santos Silva [查看电子邮件]
[v1] 星期二, 2025 年 7 月 1 日 03:30:39 UTC (321 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
quant-ph
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-07
切换浏览方式为:
cs
cs.CC

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号