数学物理
[提交于 2025年7月16日
]
标题: Liouville量子对偶性与随机平面图
标题: Liouville Quantum Duality and Random Planar Maps
摘要: 我们考虑块加权随机平面图模型,在这些模型中,可能装饰的图被规范地分解为块,每个块获得权重$u$。 这些图在某个临界值$u=u_{cr}$处出现相变,超过该值后,图退化为布朗树。 我们证明了在$u=u_{cr}$处的图的计数性质和临界指数与$u<u_{cr}$处的那些之间存在由对偶关系连接,这些对偶关系正是在随机曲面的Liouville量子引力描述背景下所预期的。 我们通过各种块加权图的例子来说明这一结果:分解为简单块的随机平面四边形图,分解为不可约块的三次或双三次平面图上的哈密顿圈,以及测地线系统。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.