Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2508.08194

帮助 | 高级搜索

数学 > 算子代数

arXiv:2508.08194 (math)
[提交于 2025年8月11日 (v1) ,最后修订 2025年8月27日 (此版本, v2)]

标题: Weyl群和冯·诺依曼代数的刚性

标题: Weyl groups and rigidity of von Neumann algebras

Authors:Cyril Houdayer, Adrian Ioana
摘要: 设$G$为一个中心平凡的非紧致半单代数群,$S < G$为一个极大分裂环,$H < G$为$S$在$G$中的中心化子,$\Gamma < G$为一个不可约格。 考虑与非奇异作用$\Gamma \curvearrowright G/H$关联的群测度空间冯·诺依曼代数$\mathscr M = \operatorname{L}(\Gamma \curvearrowright G/H)$,并将群冯·诺依曼代数$M = \operatorname{L}(\Gamma)$视为冯·诺依曼子代数$M \subset \mathscr M$。 We show that the group $\operatorname{Aut}_M(\mathscr M)$ of all unital normal $\ast$-automorphisms of $\mathscr M$ acting identically on $M$ is isomorphic to the Weyl group $\mathscr W_G$ of the semisimple algebraic group $G$. Our main theorem is a noncommutative analogue of a rigidity result of Bader-Furman-Gorodnik-Weiss for group actions on algebraic homogeneous spaces and moreover gives new insight towards Connes' rigidity conjecture for higher rank lattices.
摘要: Let $G$ be a noncompact semisimple algebraic group with trivial center, $S < G$ a maximal split torus, $H < G$ the centralizer of $S$ in $G$ and $\Gamma < G$ an irreducible lattice. Consider the group measure space von Neumann algebra $\mathscr M = \operatorname{L}(\Gamma \curvearrowright G/H)$ associated with the nonsingular action $\Gamma \curvearrowright G/H$ and regard the group von Neumann algebra $M = \operatorname{L}(\Gamma)$ as a von Neumann subalgebra $M \subset \mathscr M$. We show that the group $\operatorname{Aut}_M(\mathscr M)$ of all unital normal $\ast$-automorphisms of $\mathscr M$ acting identically on $M$ is isomorphic to the Weyl group $\mathscr W_G$ of the semisimple algebraic group $G$. Our main theorem is a noncommutative analogue of a rigidity result of Bader-Furman-Gorodnik-Weiss for group actions on algebraic homogeneous spaces and moreover gives new insight towards Connes' rigidity conjecture for higher rank lattices.
评论: 14页
主题: 算子代数 (math.OA) ; 动力系统 (math.DS); 群论 (math.GR)
MSC 类: 20G25, 22D25, 37A40, 46L10, 46L55
引用方式: arXiv:2508.08194 [math.OA]
  (或者 arXiv:2508.08194v2 [math.OA] 对于此版本)
  https://doi.org/10.48550/arXiv.2508.08194
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Cyril Houdayer [查看电子邮件]
[v1] 星期一, 2025 年 8 月 11 日 17:13:09 UTC (16 KB)
[v2] 星期三, 2025 年 8 月 27 日 07:21:11 UTC (16 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
math.OA
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-08
切换浏览方式为:
math
math.DS
math.GR

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号