Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2508.16529

帮助 | 高级搜索

数学 > 泛函分析

arXiv:2508.16529 (math)
[提交于 2025年8月22日 ]

标题: 与$L^2(\mathbb{R})$中某些翻译系统不相容的操作

标题: Operations that are incompatible with certain systems of translates in $L^2(\mathbb{R})$

Authors:Pu-Ting Yu
摘要: 我们说闭子空间$M$of$L^2(\mathbb{R})$有一个\emph{半正则a-平移的完整集合},如果存在某些$a>0$,有限个函数$g_1,\dots,g_N$,某些子集$J_1,\dots,J_N$of$\mathbb{Z}$和某些有限子集$\{\alpha_{1j}\}_{j=1}^{K_1},\dots,\{\alpha_{Nj}\}_{j=1}^{K_N}$of$\mathbb{R}$,使得$$M={\overline{\text{span}}}\{g_i(\cdot-ak), ~g_i(\cdot-\alpha_{ij})\,|\,k\in J_i,1\leq j\leq K_i\,\}_{i=1}^N.$$ 这里$\cdot$表示一个通用变量。 在本文的前半部分,我们证明了一个闭子空间如果在调制下闭合,或者在缩放因子 $b$ 下闭合,且满足 $b\neq 0$ 和 $b^{-1}\notin \mathbb{Z}.$,则 $L^2(\mathbb{R})$ 的闭子空间不包含半正则 $a$-平移的完全集。我们还表明, $L^2(\mathbb{R})$ 的任何无限维闭子空间都不能同时在傅里叶变换下闭合,并且具有半正则 $a$-平移的完全集,当 $a^2\in \mathbb{Q}$ 时,而对于任何 $a>0$,都存在在反射下闭合并且具有半正则 $a$-平移的完全集的闭子空间。 In the second half, we prove that a closed subspace of $L^2(\mathbb{R})$ does not admit a frame formed by a system of translates if it contains a closed subspace that is closed under modulation and contains a nonzero function in $M^1(\mathbb{R})$. We also prove that no closed subspace of $L^2(\mathbb{R})$ can simultaneously be closed under modulation and admit a Schauder basis of translates generated by finitely many functions in $M^1(\mathbb{R}).$ In addition, we present related results concerning the incompatibility between being closed under Fourier transform and the existence of frames or Schauder bases of translates in closed subspaces of $L^2(\mathbb{R})$. All results in this half can be extended to $L^2(\mathbb{R}^d)$ for any $d>1.$
摘要: We say that a closed subspace $M$ of $L^2(\mathbb{R})$ admits a \emph{complete set of semi-regular a-translates} if there exist some $a>0$, finitely many functions $g_1,\dots,g_N$, some subsets $J_1,\dots,J_N$ of $\mathbb{Z}$ and some finite subsets $\{\alpha_{1j}\}_{j=1}^{K_1},\dots,\{\alpha_{Nj}\}_{j=1}^{K_N}$ of $\mathbb{R}$ such that $$M={\overline{\text{span}}}\{g_i(\cdot-ak), ~g_i(\cdot-\alpha_{ij})\,|\,k\in J_i,1\leq j\leq K_i\,\}_{i=1}^N.$$ Here $\cdot$ denotes a generic variable. In the first half of this paper, we prove that a closed subspace of $L^2(\mathbb{R})$ does not admit a complete set of semi-regular $a$-translates if it is closed under modulation or if it is closed under dilation with respect to a scaling factor $b$ satisfying $b\neq 0$ and $b^{-1}\notin \mathbb{Z}.$ We also show that no infinite-dimensional closed subspace of $L^2(\mathbb{R})$ can simultaneously be closed under Fourier transform and admit a complete set of semi-regular $a$-translates with $a^2\in \mathbb{Q}$, whereas for any $a>0$, there do exist closed subspaces that are closed under reflection and admit a complete set of semi-regular $a$-translates. In the second half, we prove that a closed subspace of $L^2(\mathbb{R})$ does not admit a frame formed by a system of translates if it contains a closed subspace that is closed under modulation and contains a nonzero function in $M^1(\mathbb{R})$. We also prove that no closed subspace of $L^2(\mathbb{R})$ can simultaneously be closed under modulation and admit a Schauder basis of translates generated by finitely many functions in $M^1(\mathbb{R}).$ In addition, we present related results concerning the incompatibility between being closed under Fourier transform and the existence of frames or Schauder bases of translates in closed subspaces of $L^2(\mathbb{R})$. All results in this half can be extended to $L^2(\mathbb{R}^d)$ for any $d>1.$
评论: 36页,任何评论都将不胜感激
主题: 泛函分析 (math.FA) ; 经典分析与常微分方程 (math.CA)
引用方式: arXiv:2508.16529 [math.FA]
  (或者 arXiv:2508.16529v1 [math.FA] 对于此版本)
  https://doi.org/10.48550/arXiv.2508.16529
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Pu-Ting Yu [查看电子邮件]
[v1] 星期五, 2025 年 8 月 22 日 16:52:10 UTC (35 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
math.FA
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-08
切换浏览方式为:
math
math.CA

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号