Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > gr-qc > arXiv:2510.24953

帮助 | 高级搜索

广义相对论与量子宇宙学

arXiv:2510.24953 (gr-qc)
[提交于 2025年10月28日 ]

标题: 中子超时空泡沫和宇宙常数

标题: Midisuperspacetime foam and the cosmological constant

Authors:Steven Carlip
摘要: 标准量子场论论证预测了一个巨大的宇宙学常数。 但这在观测上意味着什么? 对于一个均匀的宇宙,答案是明确的,但如果宇宙在普朗克尺度上是不均匀的,这个问题就变得更为微妙:对于一大类初始数据,快速膨胀和收缩的区域共存,并给出接近于零的平均膨胀。 经典上,这样的数据会发展出奇点,我们需要它们演化的量子描述。 我描述了一个球对称的中超空间模型的结果,在该模型中,波函数可以在平均膨胀保持较小的区域中长时间被束缚,从而有效地隐藏了一个大的宇宙学常数。
摘要: Standard quantum field theory arguments predict an enormous cosmological constant. But what would this mean observationally? For a homogeneous universe the answer is clear, but if the universe is inhomogeneous at the Planck scale, the question becomes more subtle: for a large class of initial data, rapidly expanding and contracting regions coexist and give an average expansion near zero. Classically, such data develop singularities, and we need a quantum description of their evolution. I describe results from a spherically symmetric midisuperspace model, in which the wave function can become trapped for long periods in regions in which the average expansion remains small, effectively hiding a large cosmological constant.
评论: 基于部分arXiv:2106.09751;将发表于第24届国际广义相对论和引力会议及第16届埃多阿尔多·阿马尔迪引力波会议论文集
主题: 广义相对论与量子宇宙学 (gr-qc) ; 高能物理 - 理论 (hep-th)
引用方式: arXiv:2510.24953 [gr-qc]
  (或者 arXiv:2510.24953v1 [gr-qc] 对于此版本)
  https://doi.org/10.48550/arXiv.2510.24953
通过 DataCite 发表的 arXiv DOI(待注册)

提交历史

来自: Steven Carlip [查看电子邮件]
[v1] 星期二, 2025 年 10 月 28 日 20:36:12 UTC (8 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
查看许可
当前浏览上下文:
gr-qc
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-10
切换浏览方式为:
hep-th

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号