高能物理 - 理论
[提交于 1994年7月29日
]
标题: (3+1)维施温格项和非对易几何
标题: (3+1)-Dimensional Schwinger Terms and Non-commutative Geometry
摘要: We discuss 2-cocycles of the Lie algebra $\Map(M^3;\g)$ of smooth, compactly supported maps on 3-dimensional manifolds $M^3$ with values in a compact, semi-simple Lie algebra $\g$. We show by explicit calculation that the Mickelsson-Faddeev-Shatashvili cocycle $\f{\ii}{24\pi^2}\int\trac{A\ccr{\dd X}{\dd Y}}$ is cohomologous to the one obtained from the cocycle given by Mickelsson and Rajeev for an abstract Lie algebra $\gz$ of Hilbert space operators modeled on a Schatten class in which $\Map(M^3;\g)$ can be naturally embedded. This completes a rigorous field theory derivation of the former cocycle as Schwinger term in the anomalous Gauss' law commutators in chiral QCD(3+1) in an operator framework. The calculation also makes explicit a direct relation of Connes' non-commutative geometry to (3+1)-dimensional gauge theory and motivates a novel calculus generalizing integration of $\g$-valued forms on 3-dimensional manifolds to the non-commutative case.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.