Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math.NT

帮助 | 高级搜索

数论

  • 新提交
  • 交叉列表
  • 替换

查看 最近的 文章

显示 2025年06月06日, 星期五 新的列表

总共 15 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有

新提交 (展示 4 之 4 条目 )

[1] arXiv:2506.04722 [中文pdf, pdf, html, 其他]
标题: 源于仿射李超代数的不定θ函数与三角数之和
标题: Indefinite theta functions arising from affine Lie superalgebras and sums of triangular numbers
Toshiki Matsusaka, Miyu Suzuki
评论: 39页
主题: 数论 (math.NT) ; 组合数学 (math.CO)

我们将最近由Roehrig和Zwegers发展起来的关于不定theta函数的理论加以推广,以证明某些幂级数是模形式。 作为结果,我们得到了三角数生成函数的幂的若干幂级数恒等式。 我们还表明这些恒等式作为仿射李超代数的分母恒等式的特例出现。

We extend the recently developed theory of Roehrig and Zwegers on indefinite theta functions to prove certain power series are modular forms. As a consequence, we obtain several power series identities for powers of the generating function of triangular numbers. We also show that these identities arise as specializations of denominator identities of affine Lie superalgebras.

[2] arXiv:2506.04883 [中文pdf, pdf, html, 其他]
标题: 关于梅森数的因数个数
标题: On the number of divisors of Mersenne numbers
Vjekoslav Kovač, Florian Luca
评论: 10页,3个图,2个表格
主题: 数论 (math.NT)

记作 $f(n):=\sum_{1\le k\le n} \tau(2^k-1)$,其中 $\tau$ 是除数函数。 受保罗·埃尔德什提出的问题启发,我们证明了比值序列 $f(2n)/f(n)$ 是无界的。 我们还给出了该序列发散至无穷的条件性结果。 最后,我们通过数值测试了猜想 $f(2n)/f(n)\to\infty$ 及其成立的充分条件。

Denote $f(n):=\sum_{1\le k\le n} \tau(2^k-1)$, where $\tau$ is the number of divisors function. Motivated by a question of Paul Erd\H{o}s, we show that the sequence of ratios $f(2n)/f(n)$ is unbounded. We also present conditional results on the divergence of this sequence to infinity. Finally, we test numerically both the conjecture $f(2n)/f(n)\to\infty$ and our sufficient conditions for it to hold.

[3] arXiv:2506.05212 [中文pdf, pdf, html, 其他]
标题: 关于高阶Weil-Oesterlé界的改进:基于Serre型论证
标题: Refinements on higher order Weil-Oesterlé bounds via a Serre type argument
Emmanuel Hallouin, Philippe Moustrou, Marc Perret
评论: 17页,2个图
主题: 数论 (math.NT) ; 代数几何 (math.AG)

韦伊定理给出了有限域上曲线点数的最标准界。 对于更高亏格的情况,伊哈拉和奥斯特勒改进了这一界。 最近,霍兰和佩雷特从这些界的角度提出了一个新的观点,可以通过求解一系列半定规划问题得到,而这个层次结构中的前两步分别恢复了韦伊和伊哈拉的界。 另一方面,通过考虑算术约束,塞尔得到了韦伊界的改进。 本文结合这两种方法,基于塞尔改进的类似论据,提出了一种加强版的伊哈拉界。 我们证明,这在一般情况下优于伊哈拉界,即使是在它之前是最好的界的情况下。 最后,我们讨论了将这种思路扩展到更高阶韦伊-奥斯特勒界的可能途径。

Weil's theorem gives the most standard bound on the number of points of a curve over a finite field. This bound was improved by Ihara and Oesterl\'e for larger genus. Recently, Hallouin and Perret gave a new point of view on these bounds, that can be obtained by solving a sequence of semi-definite programs, and the two first steps of this hierarchy recover Weil's and Ihara's bounds. On the other hand, by taking into account arithmetic constraints, Serre obtained a refinement on Weil's bound. In this article, we combine these two approaches and propose a strengthening of Ihara's bound, based on an argument similar to Serre's refinement. We show that this generically improves upon Ihara's bound, even in the range where it was the best bound so far. Finally we discuss possible extensions to higher order Weil-Oesterl\'e bounds.

[4] arXiv:2506.05254 [中文pdf, pdf, html, 其他]
标题: Misiurewicz 参数的非单位猜想
标题: The non-unit conjecture for Misiurewicz parameters
Robert L. Benedetto, Vefa Goksel
评论: 19页
主题: 数论 (math.NT)

一个Misiurewicz参数是一个复数 $c$,对于该参数,临界点 $z=0$ 在映射 $z^2+c$ 下的轨道是严格预周期的。 这样的参数在动力学模空间中扮演的角色,就如同模曲线中的奇异模数(对应于复乘椭圆曲线)所起的作用一样。 基于我们之前的工作,我们研究了两个Misiurewicz参数之差是否可以是代数单位的问题。 (最近Li已经回答了关于奇异模数的相应问题,并给出了否定的答案。) 在广泛被认为成立的不可约性假设下,我们在许多新的情况下回答了这个动力学问题。

A Misiurewicz parameter is a complex number $c$ for which the orbit of the critical point $z=0$ under $z^2+c$ is strictly preperiodic. Such parameters play the same role in dynamical moduli spaces as singular moduli (corresponding to CM elliptic curves) play on modular curves. Building on our earlier work, we investigate whether the difference of two Misiurewicz parameters can be an algebraic unit. (The corresponding question for singular moduli was recently answered in the negative by Li.) We answer this dynamical question in many new cases under a widely believed irreducibility assumption.

交叉提交 (展示 1 之 1 条目 )

[5] arXiv:2506.04449 (交叉列表自 math.RT) [中文pdf, pdf, html, 其他]
标题: 深度正的Deligne--Lusztig诱导的Green函数
标题: Green functions for positive-depth Deligne--Lusztig induction
Charlotte Chan, Masao Oi
评论: 57页
主题: 表示理论 (math.RT) ; 数论 (math.NT)

在剩余域大小的一个充分大假设下,我们给出了无裂变椭圆对偶 $(T,\theta)$ 的正深度Deligne–Lusztig诱导的显式描述。 当 $\theta$ 是正则时,我们证明正深度Deligne–Lusztig诱导给出了Kaletha的Howe无裂变正则 $L$-包的一个几何实现。 这是非常简单的“pH试纸测试”特征定理的一个直接推论,我们预见这个定理在未来的小型 $p$ 构造中有有趣的潜在应用。 接下来我们定义并分析了两种不同来源的Green函数:Yu的构造(代数)和正深度Deligne–Lusztig诱导(几何)。 利用这些,我们从正则情形推导出任意 $\theta$ 的比较结果。 作为我们比较同构的一个进一步应用,我们在 $0$-toral 情形下证明了正深度Springer假设,并用它来解释轨道积分出现在超奇异特征公式中的几何原因。

Under a largeness assumption on the size of the residue field, we give an explicit description of the positive-depth Deligne--Lusztig induction of unramified elliptic pairs $(T,\theta)$. When $\theta$ is regular, we show that positive-depth Deligne--Lusztig induction gives a geometric realization of Kaletha's Howe-unramified regular $L$-packets. This is obtained as an immediate corollary of a very simple "litmus test" characterization theorem which we foresee will have interesting future applications to small-$p$ constructions. We next define and analyze Green functions of two different origins: Yu's construction (algebra) and positive-depth Deligne--Lusztig induction (geometry). Using this, we deduce a comparison result for arbitrary $\theta$ from the regular setting. As a further application of our comparison isomorphism, we prove the positive-depth Springer hypothesis in the $0$-toral setting and use it to give a geometric explanation for the appearance of orbital integrals in supercuspidal character formulae.

替换提交 (展示 10 之 10 条目 )

[6] arXiv:2303.00143 (替换) [中文pdf, pdf, html, 其他]
标题: 赫克作用于环路和迭代志村积分的周期
标题: Hecke Actions on Loops and Periods of Iterated Shimura Integrals
Richard Hain
评论: 101页;最终版本。将于《高等科学学院 annales 科学期刊》发表。本文附录由Pham Tiep撰写,未包含在此版本中,可在arXiv:2303.02807获取。所有修改均在第17.3节。
主题: 数论 (math.NT) ; 代数几何 (math.AG) ; 表示理论 (math.RT)

本文中我们证明经典的Hecke对应关系 T_N(N>0)作用于由模群 SL_2(Z) 的共轭类以及其完备化的共轭类生成的自由 Abel 群上。 我们进一步证明这种作用在模群的某个相对幂零完备化类函数环上诱导了一个对偶作用。 这个环包含了在共轭类上恒定的所有模形式的迭代积分。 它具有一个自然的混合霍奇结构,并且在与 Q_ell 张量积后,具有绝对伽罗瓦群的一个自然作用。 每个Hecke算子都保持这个混合霍奇结构并且与绝对伽罗瓦群的作用交换。 与经典情况不同的是,这些Hecke算子生成的代数不是交换的。 Pham Tiep 所写的附录未包含。 可以在 arXiv:2303.02807 查看。

In this paper we show that the classical Hecke correspondences T_N, N>0, act on the free abelian groups generated by the conjugacy classes of the modular group SL_2(Z) and the conjugacy classes of its profinite completion. We show that this action induces a dual action on the ring of class functions of a certain relative unipotent completion of the modular group. This ring contains all iterated integrals of modular forms that are constant on conjugacy classes. It possesses a natural mixed Hodge structure and, after tensoring with Q_ell$, a natural action of the absolute Galois group. Each Hecke operator preserves this mixed Hodge structure and commutes with the action of the absolute Galois group. Unlike in the classical case, the algebra generated by these Hecke operators is not commutative. The appendix by Pham Tiep is not included. It can be found at arXiv:2303.02807.

[7] arXiv:2306.15594 (替换) [中文pdf, pdf, html, 其他]
标题: 双延长平面分划与7的幂:应用于亏格1同余族的局部化方法
标题: 2-Elongated Plane Partitions and Powers of 7: The Localization Method Applied to a Genus 1 Congruence Family
Koustav Banerjee, Nicolas Allen Smoot
评论: 在线的 Mathematica 补充材料可以在以下链接找到: https://drive.google.com/file/d/1_5Tyap1P1SgauxO20lzJhWa2SCKDI_vG/view?usp=sharing https://www3.risc.jku.at/people/nsmoot/FullInitialCases014.nb
主题: 数论 (math.NT)

在过去的一个世纪里,人们发现了大量无穷的同余家族,并对其进行了研究,这些家族在难度上表现出极大的多样性。与之相关的模曲线的拓扑结构带来了主要的复杂因素:当相关曲线的尖点数为2且亏格为0时,经典方法就足够了。近期的研究已经产生了新的技术,这些技术在相关曲线的尖点数大于2且亏格为0的情况下证明是有用的。 我们在此表明,这些技术可以在正亏格的情况下进行调整。具体来说,我们考察了一个关于2-伸长平面分区钻石计数函数 $d_2(n)$ 的同余家族,该家族以7的幂次展开,其对应的模曲线的尖点数为4且亏格为1。 我们将我们的方法与其他证明亏格1同余家族的技术进行比较,并推测了一个由7的幂次构成的第二个同余家族,这个家族可能适用于类似的技巧。

Over the last century, a large variety of infinite congruence families have been discovered and studied, exhibiting a great variety with respect to their difficulty. Major complicating factors arise from the topology of the associated modular curve: classical techniques are sufficient when the associated curve has cusp count 2 and genus 0. Recent work has led to new techniques that have proven useful when the associated curve has cusp count greater than 2 and genus 0. We show here that these techniques may be adapted in the case of positive genus. In particular, we examine a congruence family over the 2-elongated plane partition diamond counting function $d_2(n)$ by powers of 7, for which the associated modular curve has cusp count 4 and genus 1. We compare our method with other techniques for proving genus 1 congruence families, and conjecture a second congruence family by powers of 7, which may be amenable to similar techniques.

[8] arXiv:2308.06673 (替换) [中文pdf, pdf, html, 其他]
标题: 关于椭圆曲线的伽罗瓦表示的Greenberg猜想的注记
标题: Remarks on Greenberg's conjecture for Galois representations associated to elliptic curves
Anwesh Ray
评论: 版本 2:21页, minor improvements and corrections. 被接受在《韩国数学学会杂志》上发表。
主题: 数论 (math.NT)

设 $E_{/\mathbb{Q}}$ 为一条椭圆曲线,$p$ 为使 $E$ 在其处具有良好普通约化的一个奇素数。 设 $Sel_{p^\infty}(\mathbb{Q}_\infty, E)$ 表示将 $E$ 考虑为 $\mathbb{Q}$ 的 cyclotomic $\mathbb{Z}_p$-扩张时的 $p$-主要赛尔默群。 $Sel_{p^\infty}(\mathbb{Q}_\infty, E)$ 的 (代数) \emph{$\mu$-不变量}} 记为 $\mu_p(E)$。 $\bar{\rho}_{E, p}:Gal(\bar{\mathbb{Q}}/\mathbb{Q})\rightarrow GL_2(\mathbb{Z}/p\mathbb{Z})$ 表示 $E(\bar{\mathbb{Q}})$ 的 $p$-扭转子群的伽罗瓦表示。 格林伯格推测,如果 $\bar{\rho}_{E, p}$ 是可约的,那么存在一个有理同源性映射 $E\rightarrow E'$,其次数是 $p$ 的幂,并且满足 $\mu_p(E')=0$。 本文通过证明当某些纯粹由伽罗瓦理论条件决定的条件成立时该猜想成立来研究这一问题,这些条件用表示 $\bar{\rho}_{E,p}$ 表达。 在得出我们的结论的过程中,我们利用了科茨和苏贾塔关于精细赛默群代数结构的一个定理。 此外,在$\bar{\rho}_{E, p}$不可约的情况下,我们证明了我们的假设意味着$\mu_p(E)=0$,前提是经典的伊瓦萨瓦$\mu$-不变量对于分裂域$\mathbb{Q}(E[p]):=\bar{\mathbb{Q}}^{ker\bar{\rho}_{E,p}}$为零。

Let $E_{/\mathbb{Q}}$ be an elliptic curve and $p$ be an odd prime number at which $E$ has good ordinary reduction. Let $Sel_{p^\infty}(\mathbb{Q}_\infty, E)$ denote the $p$-primary Selmer group of $E$ considered over the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$. The (algebraic) \emph{$\mu$-invariant} of $Sel_{p^\infty}(\mathbb{Q}_\infty, E)$ is denoted $\mu_p(E)$. Denote by $\bar{\rho}_{E, p}:Gal(\bar{\mathbb{Q}}/\mathbb{Q})\rightarrow GL_2(\mathbb{Z}/p\mathbb{Z})$ the Galois representation on the $p$-torsion subgroup of $E(\bar{\mathbb{Q}})$. Greenberg conjectured that if $\bar{\rho}_{E, p}$ is reducible, then there is a rational isogeny $E\rightarrow E'$ whose degree is a power of $p$, and such that $\mu_p(E')=0$. In this article, we study this conjecture by showing that it is satisfied provided some purely Galois theoretic conditions hold that are expressed in terms of the representation $\bar{\rho}_{E,p}$. In establishing our results, we leverage a theorem of Coates and Sujatha on the algebraic structure of the fine Selmer group. Furthermore, in the case when $\bar{\rho}_{E, p}$ is irreducible, we show that our hypotheses imply that $\mu_p(E)=0$ provided the classical Iwasawa $\mu$-invariant vanishes for the splitting field $\mathbb{Q}(E[p]):=\bar{\mathbb{Q}}^{ker\bar{\rho}_{E,p}}$.

[9] arXiv:2407.03078 (替换) [中文pdf, pdf, html, 其他]
标题: 计算流形非各向同性邻域中的有理点数量
标题: Counting Rational Points In Non-Isotropic Neighborhoods of Manifolds
Rajula Srivastava
评论: 42页。欢迎评论!更新了猜想1.2并修正了少量排版错误。
主题: 数论 (math.NT) ; 经典分析与常微分方程 (math.CA)

在这篇手稿中,我们开始研究位于一个紧致子流形$\mathcal{M}$的非各向同性$\delta_1\times\ldots\times \delta_R$邻域内且分母有界的有理点的个数,该子流形是$\mathbb{R}^{M}$中余维数为$R$的子流形。当$\mathcal{M}$满足由 Schindler 和 Yamagishi 在\cite{schindler2022density}中首次引入的强曲率条件时,我们得到了该计数函数的一个上界。 此外,即使在各向同性的情况下,当$\delta_1=\ldots=\delta_R=\delta$时,我们也得到了一个渐近公式,该公式在\cite{schindler2022density}中建立的到$\mathcal{M}$的距离范围之外仍然成立。 我们的结果也是J.J. Huang \cite{huangduke}关于超曲面工作的推广。 作为应用,我们首次建立了流形$\mathcal{M}$上满足强曲率条件的加权同时可近似点集的豪斯多夫维数的上界,这与Allen-Wang在\cite{allen2022note}中获得的下界一致。 此外,对于 $R>1$,我们得到了一个新的有理点数的上界 \textit{关于} $\mathcal{M}$ ,该上界超出了 Serre 尺度增长猜想类比于 $\mathbb{R}^M$子流形情形中的界。

In this manuscript, we initiate the study of the number of rational points with bounded denominators, contained in a non-isotropic $\delta_1\times\ldots\times \delta_R$ neighborhood of a compact submanifold $\mathcal{M}$ of codimension $R$ in $\mathbb{R}^{M}$. We establish an upper bound for this counting function which holds when $\mathcal{M}$ satisfies a strong curvature condition, first introduced by Schindler-Yamagishi in \cite{schindler2022density}. Further, even in the isotropic case when $\delta_1=\ldots=\delta_R=\delta$, we obtain an asymptotic formula which holds beyond the range of distance to $\mathcal{M}$ established in \cite{schindler2022density}. Our result is also a generalization of the work of J.J. Huang \cite{huangduke} for hypersurfaces. As an application, we establish for the first time an upper bound for the Hausdorff dimension of the set of weighted simultaneously well approximable points on a manifold $\mathcal{M}$ satisfying the strong curvature condition, which agrees with the lower bound obtained by Allen-Wang in \cite{allen2022note}. Moreover, for $R>1$, we obtain a new upper bound for the number of rational points \textit{on} $\mathcal{M}$, which goes beyond the bound in an analogue of Serre's dimension growth conjecture for submanifolds of $\mathbb{R}^M$ .

[10] arXiv:2408.06200 (替换) [中文pdf, pdf, html, 其他]
标题: Dirichlet 改进性在$L_p$-范数中的研究
标题: Dirichlet improvability in $L_p$-norms
Nikolay Moshchevitin, Nikita Shulga
评论: 31页,任何评论都 appreciated
主题: 数论 (math.NT) ; 动力系统 (math.DS)

对于定义在$\mathbb{R}^2$上的范数$F$,我们考虑集合$\mathbf{DI}_F$中的$F$-Dirichlet 可改进数。 在最重要的情况下,当$F$是一个$L_p$-范数且$p=\infty$是一个上确界范数时,众所周知,$\mathbf{DI}_F = \mathbf{BA}\cup \mathbb{Q}$(其中$\mathbf{BA}$是一组 badly approximable 数字)成立。同样已知的是,$\mathbf{BA}$和每个$\mathbf{DI}_F$的测度为零且豪斯多夫维数为满维。 利用单位球在$L_p$中的临界格分类,我们通过正则连分数展开中模式出现的情况,给出了$\mathbf{DI}_p:=\mathbf{DI}_{F^{[p]}}$的完整且有效的刻画,其中$F^{[p]}$是具有$p\in[1,\infty)$的$L_p$-范数。 这得出了一些推论。 特别是,我们通过证明集合$\mathbf{DI}_{p}\setminus \mathbf{BA}$具有完整的豪斯多夫维数来解决 Kleinbock 和 Rao 提出的两个开放问题,并且还证明了关于差集$\mathbf{DI}_{p_1}\setminus \mathbf{DI}_{p_2}$大小的一些结果。 具体来说,我们证明了在欧几里得范数($p=2$)下Diophantine可改进数集与Taxicab范数($p=1$)下Diophantine可改进数集的集合差集,以及反之亦然,即$\mathbf{DI}_{2}\setminus \mathbf{DI}_{1}$和$\mathbf{DI}_{1}\setminus \mathbf{DI}_{2}$,具有全Hausdorff维数。 我们还找到了所有使得集合$\mathbf{DI}_p^c\cap\mathbf{BA}$具有全Hausdorff维数的$p$的值。 最后,我们的特征化结果表明,数 $e$ 满足 $e\in \mathbf{DI}_p$ 当且仅当 $p\in(1,2)\cup(p_0,\infty)$ 对某个特殊常数 $p_0\approx2.57$。

For a norm $F$ on $\mathbb{R}^2$, we consider the set of $F$-Dirichlet improvable numbers $\mathbf{DI}_F$. In the most important case of $F$ being an $L_p$-norm with $p=\infty$, which is a supremum norm, it is well-known that $\mathbf{DI}_F = \mathbf{BA}\cup \mathbb{Q}$, where $\mathbf{BA}$ is a set of badly approximable numbers. It is also known that $\mathbf{BA}$ and each $\mathbf{DI}_F$ are of measure zero and of full Hausdorff dimension. Using classification of critical lattices for unit balls in $L_p$, we provide a complete and effective characterization of $\mathbf{DI}_p:=\mathbf{DI}_{F^{[p]}}$ in terms of the occurrence of patterns in regular continued fraction expansions, where $F^{[p]}$ is an $L_p$-norm with $p\in[1,\infty)$. This yields several corollaries. In particular, we resolve two open questions by Kleinbock and Rao by showing that the set $\mathbf{DI}_{p}\setminus \mathbf{BA}$ is of full Hausdorff dimension, as well as proving some results about the size of the difference $\mathbf{DI}_{p_1}\setminus \mathbf{DI}_{p_2}$. To be precise, we show that the set difference of Dirichlet improvable numbers in Euclidean norm ($p=2$) minus Dirichlet improvable numbers in taxicab norm ($p=1$) and vice versa, that is $\mathbf{DI}_{2}\setminus \mathbf{DI}_{1}$ and $\mathbf{DI}_{1}\setminus \mathbf{DI}_{2}$, are of full Hausdorff dimension. We also find all values of $p$, for which the set $\mathbf{DI}_p^c\cap\mathbf{BA}$ has full Hausdorff dimension. Finally, our characterization result implies that the number $e$ satisfies $e\in \mathbf{DI}_p$ if and only if $p\in(1,2)\cup(p_0,\infty)$ for some special constant $p_0\approx2.57$.

[11] arXiv:2408.16394 (替换) [中文pdf, pdf, html, 其他]
标题: 关于局部和整体函数域的初等阿贝尔扩张的渐近性
标题: On the asymptotics of elementary-abelian extensions of local and global function fields
Nicolas Potthast
评论: 51页;文章的主要结果现在已在引言章节(定理1.1)中陈述,并且引言部分的顺序已进行调整;添加了应用的容斥原理的自包含陈述(引理5.5);前一版本中的备注3.9已被删除;其他小改动;将发表于《美国数学学会会刊》。
主题: 数论 (math.NT)

我们确定了局部和整体函数域的具有野分支的初等交换扩张的判别式的分布,其中特征为$p$。 对于局部和有理函数域,我们也给出了具有固定判别式因子的初等交换扩张的确切数量公式,这些公式描述了一个局部-整体原理。

We determine the distribution of discriminants of wildly ramified elementary-abelian extensions of local and global function fields in characteristic $p$. For local and rational function fields, we also give precise formulae for the number of elementary-abelian extensions with a fixed discriminant divisor, which describe a local-global principle.

[12] arXiv:2412.01612 (替换) [中文pdf, pdf, 其他]
标题: 加藤理论对于加权图的应用
标题: Iwasawa theory for weighted graphs
Taiga Adachi, Kosuke Mizuno, Sohei Tateno
评论: 33页,7幅图
主题: 数论 (math.NT) ; 组合数学 (math.CO)

设 $p$ 为一个素数,$d$ 为一个正整数。 本文将 Gonet 和 Vallières 提出的图的伊wasawa理论推广到带权图。 特别是,我们证明了带权图的 $(\mathbb{Z}/p^n\mathbb{Z})^d$ 覆盖兼容系统的类数公式和 Kida 公式的一个类似物。 我们还提供了特征元素和伊wasawa 不变量的数值例子。 本文最后,我们将伊wasawa 理论的思想应用于图的离散时间量子行走理论。

Let $p$ be a prime number and let $d$ be a positive integer. In this paper, we generalize Iwasawa theory for graphs initiated by Gonet and Valli\`{e}res to weighted graphs. In particular, we prove an analogue of Iwasawa's class number formula and that of Kida's formula for compatible systems of $(\mathbb{Z}/p^n\mathbb{Z})^d$-covers of weighted graphs. We also provide numerical examples of characteristic elements and Iwasawa invariants. At the end of this paper, we give an application of the ideas of Iwasawa theory to the theory of discrete-time quantum walks in graphs.

[13] arXiv:2503.18789 (替换) [中文pdf, pdf, html, 其他]
标题: 关于Sylvester纲领和Cayley向量分块约化算法
标题: On the Sylvester program and Cayley algorithm for vector partition reduction
Boris Y. Rubinstein
评论: 23页,提交至《拉马努金期刊》
主题: 数论 (math.NT) ; 组合数学 (math.CO)

向量分割问题要求求解一个由若干个具有非负整数系数的线性丢番图方程组成的方程组的所有非负整数解的个数。 J.J. Sylvester 提出了将向量分割化简为标量分割之和的思想。 在两个具有正系数的最简单方程的情况下,A. Cayley 使用一种受系数条件限制的算法,将对应的双重分割化简为标量分割之和。 我们提出了原始 Cayley 算法的一种修改版本,用于这些条件不满足的情况。 这一结果被推广到任意数量的丢番图方程,以完成 Sylvester 的向量分割化简为标量分割组合的计划。

A vector partition problem asks for a number of nonnegative integer solutions to a system of several linear Diophantine equations with integer nonnegative coefficients. J.J. Sylvester put forward an idea of reduction of vector partition to a sum of scalar partitions. In the simplest case of two equations with positive coefficients A. Cayley performed a reduction of the corresponding double partition to a sum of scalar partitions using an algorithm subject to a set of conditions on the coefficients. We suggested a modification of the original Cayley algorithm for the cases when these conditions are not satisfied. This result is extended to arbitrary number of the Diophantine equations to accomplish the Sylvester program of the vector partition reduction to a combination of scalar partitions.

[14] arXiv:2505.03447 (替换) [中文pdf, pdf, html, 其他]
标题: 关于素数与平方数之和在短区间上的渐近公式,区间长度小于$X^{1/2}$
标题: Asymptotic formula for the sum of a prime and a square-full number in short intervals shorter than $X^{1/2}$
Fumi Ogihara
主题: 数论 (math.NT)

设 $R(N)$ 为 $N$ 表示为一个素数与一个幂满数之和的表示次数,并以对数函数为权。 在$2024$中,作者与 Y. Suzuki 得到了一个渐近公式,用于计算在短区间 ($X$,$X+H$] 内正整数$N$上$R(N)$的和,其中$X^{\frac{1}{2}+\varepsilon} \le H < X^{1-\varepsilon}$。 本文中,我们改进了$H$的范围,也就是说,我们证明了对于$X^{\frac{32-4\sqrt{15}}{49}+\varepsilon} \le H \le X^{1- \varepsilon}$同样的渐近公式。

Let $R(N)$ be the number of representations of $N$ as a sum of a prime and a square-full number weighted with logarithmic function. In $2024$, the author and Y. Suzuki obtained an asymptotic formula for the sum of $R(N)$ over positive integers $N$ in a short interval ($X$, $X+H$] for $X^{\frac{1}{2}+\varepsilon} \le H < X^{1-\varepsilon}$. In this article, we improve the range of $H$, that is, we prove the same asymptotic formula for $X^{\frac{32-4\sqrt{15}}{49}+\varepsilon} \le H \le X^{1- \varepsilon}$.

[15] arXiv:2506.02434 (替换) [中文pdf, pdf, html, 其他]
标题: 一个与勒让德符号相关的数论问题
标题: An old number theory problem related to the Legendre symbol
Wenpeng Zhang
主题: 历史与概述 (math.HO) ; 数论 (math.NT)

本文的主要目的是用一种非常简单的初等构造性方法研究一个与模$p$的勒让德符号相关的古老数论问题,并完全解决了它。

The main purpose of this paper is using a very simple elementary constructive method to study an old number theory problem related to the Legendre symbol modulo $p$, and completely solved it.

总共 15 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号