查看 最近的 文章
论文是Johann Heinrich Lambert于1771年在"柏林皇家科学与优美文学学院学报"中发表的法文旧论文的英文翻译,他在其中以先知般的方式设想了如今全球气象观测系统。 Johann Heinrich Lambert是一位多才多艺的学者,他还定义了方位圆柱形和圆锥形等面积投影以及保角圆锥投影,这些投影至今仍用于绘制天气图:即所谓的兰伯特投影。 还应注意的是,Lambert(1779)将在下一篇文章中推导出温度的绝对下限(大约-270{\deg }C),这比Guillaume Amontons(1703)的首次尝试(大约-240{\deg }C)要晚得多,但远早于William Thomson(1848,后为凯尔文男爵)定义的所谓绝对开尔文温度尺度,该尺度至今仍在使用(大约-273{\deg }C)。
The paper is an English translation of the 1771 old-French paper by Johann Heinrich Lambert in the "M\'emoires de l'Acad\'emie Royale des Sciences et Belles-Lettres de Berlin" where he imagined in a prophetic way the same present global meteorological observation system. Johann Heinrich Lambert is the same polymath who also defined the azimuthal, cylindrical and conical equal area, as well as conformal conic map projections still used in Meteorology to plot the weather maps: the so-called Lambert's projections. Note also that Lambert (1779) will derive in a next paper an absolute lower limit for the temperatures (at about -270{\deg}C), long after the first attempt by Guillaume Amontons (1703) (at about -240{\deg}C), but far before the definition by William Thomson (1848, next Lord Kelvin) of the so-called absolute Kelvin's scale of temperature still used nowadays (at about -273{\deg}C).
在本文中,粒子物理中量子纠缠的历史起源被系统而深入地研究。 1957年,波姆和阿哈罗诺夫指出,爱因斯坦-波多尔斯基-罗森关联在1949年吴健雄和沙克诺夫的实验中已被实验实现。 这是历史上第一次在受控实验中明确实现了空间分离的量子纠缠。 惠勒首先提出这样的实验作为量子电动力学的测试,但他的计算有误;正确的理论计算来自沃德和普莱斯,以及辛德勒、帕斯特纳克和霍恩博斯特尔,结果与杨振宁1949年的选择规则一致。 在贝尔不等式于1964年发表之后,人们考虑是否可以利用吴-沙克诺夫实验来测试它。 这推动了该领域的发展,吴的小组进行了一项新实验,尽管它未能成功测试贝尔不等式的违反。 1957年,李政道、雷纳德·奥姆和杨振宁建立了介子的量子力学描述,并发现中性介子是一个两态系统。 1958年,基于类似于杨振宁1949年选择规则的方法,戈德哈伯、李政道和杨振宁首次写下了介子对的纠缠态,在这种状态下,单个介子可以带电或不带电。 这首次实现了高能粒子内部自由度的量子纠缠,除了光子之外。 1960年,作为未发表的工作,李政道和杨振宁讨论了中性介子对的量子纠缠后果。 我们还描述了几位过去的物理学家,特别是沃德。 本文的中文版本于2023年初发表。
In this paper, the historical origins of quantum entanglement in particle physics are systematically and thoroughly investigated. 1957, Bohm and Aharonov noted that the Einstein-Podolsky-Rosen correlation had been experimentally realised in the 1949 experiment of Chien-Shiung Wu and Shaknov. This was the first time in history that spatially separated quantum entanglement was explicitly realised in a controlled experiment. Wheeler first proposed such an experiment as a test of quantum electrodynamics, but his calculation was in error; the correct theoretical calculations came from Ward and Price, as well as from Snyder, Pasternack and Hornbostel, and the result was in accordance with Yang's 1949 selection rule. After the publication of Bell's inequality in 1964, it was considered whether it could be tested by using the Wu-Shaknov experiment. This gave an impetus to the field, and a new experiment was done by Wu's group, though it was not successful as a test of Bell inequality violation. In 1957, Tsung-Dao Lee, Reinhard Oehme and Chen Ning Yang established the quantum mechanical description of the kaons and found that the neutral kaon is a two-state system. In 1958, based on an approach similar to Yang's 1949 selection rule, Goldhaber, Lee and Yang were the first to write down the entangled states of kaon pairs, in which a single kaon can be charged or neutral. This gave, for the first time, quantum entanglement of internal degrees of freedom of high-energy particles other than photons. In 1960, as unpublished work, Lee and Yang discussed the consequences of quantum entanglement of neutral kaon pairs. We also describe several physicists in the past, especially Ward. A Chinese version of this paper was published in early 2023.
上个世纪重要的理论成就是认识到严格可重整化可以在微扰量子场论框架内作为选择拉格朗日量的强大标准。标准模型(不包括引力)从微扰的观点来看是严格可重整化的。另一方面,引入引力似乎不满足这一标准,因为广义相对论在微扰意义上是不可重整化的。本工作的目的是提供具体的证据,表明即使应用于引力时,严格可重整化仍然是一个有效的标准。首先,我们表明在爱因斯坦-希尔伯特作用量中加入二次曲率项会产生一种称为二次引力的严格可重整化理论。其次,我们认为这种独特的理论是对量子引力最保守的方法,同时具有高度预测性,因为它可以在普朗克能标以下的区域解释广义相对论之外的新物理。特别是,它通过Starobinsky暴胀提供了对宇宙微波背景各向异性最好的拟合,并做出了可以在不久的将来进行测试的精确宇宙学预测。最后,我们对(超)普朗克能标区域进行了评论,并以历史注释结束。
An important theoretical achievement of the last century was the realization that strict renormalizability can be a powerful criterion to select Lagrangians in the framework of perturbative quantum field theory. The Standard Model Lagrangian (without gravity) is strictly renormalizable from a perturbative point of view. On the other hand, the inclusion of gravity seems not to respect this criterion, since general relativity is perturbatively non-renormalizable. The aim of this work is to provide concrete evidence that strict renormalizability is still a valid criterion even when applied to gravity. First, we show that adding quadratic curvature terms to the Einstein-Hilbert action gives rise to a strictly renormalizable theory known as quadratic gravity. Second, we argue that this unique theory represents the most conservative approach to quantum gravity and, at the same time, is highly predictive, as it can explain new physics beyond general relativity already in the sub-Planckian regime. In particular, it provides one of the best fits to the CMB anisotropies via Starobinsky inflation and makes sharp cosmological predictions that can be tested in the near future. Finally, we comment on the (super-)Planckian regime and conclude with a historical note.