Computer Science > Robotics
[Submitted on 3 Jun 2025
]
Title: Grasp2Grasp: Vision-Based Dexterous Grasp Translation via Schrödinger Bridges
Title: Grasp2Grasp:基于Schrödinger桥梁的灵巧抓取视觉转换
Abstract: We propose a new approach to vision-based dexterous grasp translation, which aims to transfer grasp intent across robotic hands with differing morphologies. Given a visual observation of a source hand grasping an object, our goal is to synthesize a functionally equivalent grasp for a target hand without requiring paired demonstrations or hand-specific simulations. We frame this problem as a stochastic transport between grasp distributions using the Schr\"odinger Bridge formalism. Our method learns to map between source and target latent grasp spaces via score and flow matching, conditioned on visual observations. To guide this translation, we introduce physics-informed cost functions that encode alignment in base pose, contact maps, wrench space, and manipulability. Experiments across diverse hand-object pairs demonstrate our approach generates stable, physically grounded grasps with strong generalization. This work enables semantic grasp transfer for heterogeneous manipulators and bridges vision-based grasping with probabilistic generative modeling.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.