Computer Science > Robotics
[Submitted on 3 Jun 2025
]
Title: Stochastic Modeling of Road Hazards on Intersections and their Effect on Safety of Autonomous Vehicles
Title: 交叉路口道路危险的随机建模及其对自动驾驶车辆安全的影响
Abstract: Autonomous vehicles (AV) look set to become common on our roads within the next few years. However, to achieve the final breakthrough, not only functional progress is required, but also satisfactory safety assurance must be provided. Among those, a question demanding special attention is the need to assess and quantify the overall safety of an AV. Such an assessment must consider on the one hand the imperfections of the AV functionality and on the other hand its interaction with the environment. In a previous paper we presented a model-based approach to AV safety assessment in which we use a probabilistic model to describe road hazards together with the impact on AV safety of imperfect behavior of AV functions, such as safety monitors and perception systems. With this model, we are able to quantify the likelihood of the occurrence of a fatal accident, for a single operating condition. In this paper, we extend the approach and show how the model can deal explicitly with a set of different operating conditions defined in a given ODD.
Submission history
From: Cornelius Buerkle [view email][v1] Tue, 3 Jun 2025 09:41:34 UTC (4,040 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.