Computer Science > Robotics
[Submitted on 15 Sep 2025
]
Title: Tenma: Robust Cross-Embodiment Robot Manipulation with Diffusion Transformer
Title: 天马:具有扩散变压器的鲁棒跨身体机器人操作
Abstract: Scaling Transformer policies and diffusion models has advanced robotic manipulation, yet combining these techniques in lightweight, cross-embodiment learning settings remains challenging. We study design choices that most affect stability and performance for diffusion-transformer policies trained on heterogeneous, multimodal robot data, and introduce Tenma, a lightweight diffusion-transformer for bi-manual arm control. Tenma integrates multiview RGB, proprioception, and language via a cross-embodiment normalizer that maps disparate state/action spaces into a shared latent space; a Joint State-Time encoder for temporally aligned observation learning with inference speed boosts; and a diffusion action decoder optimized for training stability and learning capacity. Across benchmarks and under matched compute, Tenma achieves an average success rate of 88.95% in-distribution and maintains strong performance under object and scene shifts, substantially exceeding baseline policies whose best in-distribution average is 18.12%. Despite using moderate data scale, Tenma delivers robust manipulation and generalization, indicating the great potential for multimodal and cross-embodiment learning strategies for further augmenting the capacity of transformer-based imitation learning policies.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.