Computer Science > Robotics
[Submitted on 16 Sep 2025
]
Title: Deep Generative and Discriminative Digital Twin endowed with Variational Autoencoder for Unsupervised Predictive Thermal Condition Monitoring of Physical Robots in Industry 6.0 and Society 6.0
Title: 基于变分自编码器的深度生成和判别数字孪生,用于工业6.0和社会6.0中物理机器人的无监督预测热状态监测
Abstract: Robots are unrelentingly used to achieve operational efficiency in Industry 4.0 along with symbiotic and sustainable assistance for the work-force in Industry 5.0. As resilience, robustness, and well-being are required in anti-fragile manufacturing and human-centric societal tasks, an autonomous anticipation and adaption to thermal saturation and burns due to motors overheating become instrumental for human safety and robot availability. Robots are thereby expected to self-sustain their performance and deliver user experience, in addition to communicating their capability to other agents in advance to ensure fully automated thermally feasible tasks, and prolong their lifetime without human intervention. However, the traditional robot shutdown, when facing an imminent thermal saturation, inhibits productivity in factories and comfort in the society, while cooling strategies are hard to implement after the robot acquisition. In this work, smart digital twins endowed with generative AI, i.e., variational autoencoders, are leveraged to manage thermally anomalous and generate uncritical robot states. The notion of thermal difficulty is derived from the reconstruction error of variational autoencoders. A robot can use this score to predict, anticipate, and share the thermal feasibility of desired motion profiles to meet requirements from emerging applications in Industry 6.0 and Society 6.0.
Submission history
From: Eric Guiffo Kaigom [view email][v1] Tue, 16 Sep 2025 06:52:59 UTC (4,034 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.