Computer Science > Robotics
[Submitted on 19 Sep 2025
]
Title: Defining and Monitoring Complex Robot Activities via LLMs and Symbolic Reasoning
Title: 通过大语言模型和符号推理定义和监控复杂的机器人活动
Abstract: Recent years have witnessed a growing interest in automating labor-intensive and complex activities, i.e., those consisting of multiple atomic tasks, by deploying robots in dynamic and unpredictable environments such as industrial and agricultural settings. A key characteristic of these contexts is that activities are not predefined: while they involve a limited set of possible tasks, their combinations may vary depending on the situation. Moreover, despite recent advances in robotics, the ability for humans to monitor the progress of high-level activities - in terms of past, present, and future actions - remains fundamental to ensure the correct execution of safety-critical processes. In this paper, we introduce a general architecture that integrates Large Language Models (LLMs) with automated planning, enabling humans to specify high-level activities (also referred to as processes) using natural language, and to monitor their execution by querying a robot. We also present an implementation of this architecture using state-of-the-art components and quantitatively evaluate the approach in a real-world precision agriculture scenario.
Submission history
From: Francesco Argenziano [view email][v1] Fri, 19 Sep 2025 14:19:44 UTC (13,662 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.