Quantitative Biology > Quantitative Methods
[Submitted on 23 Sep 2025
(v1)
, last revised 20 Oct 2025 (this version, v3)]
Title: Transformer-Based Hematological Malignancy Prediction from Peripheral Blood Smears in a Real-World Cohort
Title: 基于Transformer的现实世界队列中从外周血涂片预测血液系统恶性肿瘤
Abstract: Peripheral blood smears remain a cornerstone in the diagnosis of hematological neoplasms, offering rapid and valuable insights that inform subsequent diagnostic steps. However, since neoplastic transformations typically arise in the bone marrow, they may not manifest as detectable aberrations in peripheral blood, presenting a diagnostic challenge. In this paper, we introduce cAItomorph, an explainable transformer-based AI model, trained to classify hematological malignancies based on peripheral blood cytomorphology. Our data comprises peripheral blood single-cell images from 6115 patients with diagnoses confirmed by cytomorphology, cytogenetics, molecular genetics, and immunophenotyping from bone marrow samples, and 495 healthy controls, eight coarse classes. cAItomorph leverages the DinoBloom hematology foundation model and aggregates image encodings via a transformer-based architecture into a single vector. It achieves an overall accuracy of 0.72 in eight disease classification, with F1 scores of 0.76 for acute leukemia, 0.80 for myeloproliferative neoplasms and 0.94 for healthy cases. The overall accuracy increases to 0.87 in top-2 predictions. cAItomorph achieves high sensitivity for acute leukemia cases in external test sets. By analyzing attention heads, we demonstrate clinically relevant cell-level attentions in both internal and external test sets. Moreover, our model's calibrated prediction probabilities reduce the false discovery rate from 13.5% to 8.7% without missing any acute leukemia cases, thereby decreasing the number of unnecessary bone marrow aspirations based on peripheral blood smears. This study highlights the potential of AI-assisted diagnostics in hematological malignancies, illustrating how models trained on real-world data could enhance diagnostic accuracy and reduce invasive procedures.
Submission history
From: Muhammed Furkan Dasdelen [view email][v1] Tue, 23 Sep 2025 19:18:37 UTC (3,706 KB)
[v2] Fri, 17 Oct 2025 00:17:23 UTC (4,981 KB)
[v3] Mon, 20 Oct 2025 09:58:51 UTC (4,981 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.