Computer Science > Cryptography and Security
[Submitted on 29 Sep 2025
]
Title: Hound: Relation-First Knowledge Graphs for Complex-System Reasoning in Security Audits
Title: 猎犬:用于安全审计中复杂系统推理的关系优先知识图谱
Abstract: Hound introduces a relation-first graph engine that improves system-level reasoning across interrelated components in complex codebases. The agent designs flexible, analyst-defined views with compact annotations (e.g., monetary/value flows, authentication/authorization roles, call graphs, protocol invariants) and uses them to anchor exact retrieval: for any question, it loads precisely the code that matters (often across components) so it can zoom out to system structure and zoom in to the decisive lines. A second contribution is a persistent belief system: long-lived vulnerability hypotheses whose confidence is updated as evidence accrues. The agent employs coverage-versus-intuition planning and a QA finalizer to confirm or reject hypotheses. On a five-project subset of ScaBench[1], Hound improves recall and F1 over a baseline LLM analyzer (micro recall 31.2% vs. 8.3%; F1 14.2% vs. 9.8%) with a modest precision trade-off. We attribute these gains to flexible, relation-first graphs that extend model understanding beyond call/dataflow to abstract aspects, plus the hypothesis-centric loop; code and artifacts are released to support reproduction.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.