Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:1201.0131

帮助 | 高级搜索

数学 > 代数几何

arXiv:1201.0131 (math)
[提交于 2011年12月30日 ]

标题: 三维球面商

标题: A three dimensional ball quotient

Authors:Eberhard Freitag, Riccardo Salvati Manni
摘要: 在我们之前关于西格尔三折叠的研究中,考虑了属于酉群$\U(1,3)$的球面商。在本文中,我们确定了一个非常特殊的典范模形式簇的例子。实际上,我们确定了模形式环。这个代数有 25 个生成元,其中 15 个是一阶模形式$B_i$和十个是二阶模形式$C_j$。两者都将以 Borcherds 乘积的形式出现。我们确定了关系理想。形式$C_i$是尖点形式。它们的平方定义了非奇异模型上的全纯微分形式。
摘要: In connection with our previous investigation about Siegel threefolds which admit a Calabi--Yau model, we consider ball quotients which belong to the unitary group $\U(1,3)$. In this paper we determine a very particular example of a Picard modular variety of general type. Really we determine the ring of modular forms. This algebra has 25 generators, 15 modular forms $B_i$ of weight one and ten modular forms $C_j$ of weight 2. Both will appear as Borcherds products. We determine the ideal of relations. The forms $C_i$ are cuspidal. Their squares define holomorphic differential forms on the non-singular models.
评论: 35页
主题: 代数几何 (math.AG) ; 数论 (math.NT)
引用方式: arXiv:1201.0131 [math.AG]
  (或者 arXiv:1201.0131v1 [math.AG] 对于此版本)
  https://doi.org/10.48550/arXiv.1201.0131
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Riccardo Salvati Manni [查看电子邮件]
[v1] 星期五, 2011 年 12 月 30 日 14:24:14 UTC (29 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.AG
< 上一篇   |   下一篇 >
新的 | 最近的 | 2012-01
切换浏览方式为:
math
math.NT

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号