Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > q-fin > arXiv:1612.01327

帮助 | 高级搜索

定量金融 > 数学金融

arXiv:1612.01327 (q-fin)
[提交于 2016年12月5日 ]

标题: 具有交易成本的多资产投资与消费问题

标题: A multi-asset investment and consumption problem with transaction costs

Authors:David Hobson, Alex S.L. Tse, Yeqi Zhu
摘要: 在本文中,我们研究了一个具有比例交易成本的多资产Merton投资和消费问题。一般来说,在此类问题中很难取得解析进展,但我们将特殊情况限定为除一种我们称为不流动资产的单一资产的买卖外,其他交易成本均为零的情况。假设代理人的效用函数为CRRA形式,资产价格遵循指数布朗运动,我们证明了底层的HJB方程可以转化为一阶微分方程的边界值问题。最优策略是在总投资组合中投入该资产的比例超出固定区间时才交易不流动资产。多资产问题的重要性质(包括问题是否适定、不适定,或仅在交易成本较大时适定)可以从一个单变量的二次函数和另一个代数函数的行为中推断出来。
摘要: In this article we study a multi-asset version of the Merton investment and consumption problem with proportional transaction costs. In general it is difficult to make analytical progress towards a solution in such problems, but we specialise to a case where transaction costs are zero except for sales and purchases of a single asset which we call the illiquid asset. Assuming agents have CRRA utilities and asset prices follow exponential Brownian motions we show that the underlying HJB equation can be transformed into a boundary value problem for a first order differential equation. The optimal strategy is to trade the illiquid asset only when the fraction of the total portfolio value invested in this asset falls outside a fixed interval. Important properties of the multi-asset problem (including when the problem is well-posed, ill-posed, or well-posed only for large transaction costs) can be inferred from the behaviours of a quadratic function of a single variable and another algebraic function.
主题: 数学金融 (q-fin.MF)
引用方式: arXiv:1612.01327 [q-fin.MF]
  (或者 arXiv:1612.01327v1 [q-fin.MF] 对于此版本)
  https://doi.org/10.48550/arXiv.1612.01327
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Alex S.L. Tse [查看电子邮件]
[v1] 星期一, 2016 年 12 月 5 日 12:36:05 UTC (655 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
q-fin.MF
< 上一篇   |   下一篇 >
新的 | 最近的 | 2016-12
切换浏览方式为:
q-fin

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号