Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2306.10415

帮助 | 高级搜索

数学 > 数值分析

arXiv:2306.10415 (math)
[提交于 2023年6月17日 ]

标题: 有限维向量空间基的规范形式

标题: A normal form for bases of finite-dimensional vector spaces

Authors:Patrick Otto Ludl
摘要: 大多数构造有限维向量空间基的算法返回的基向量,除了正交性外,不表现出任何特殊性质。 虽然每个基都可以用来定义向量空间,但并非所有基都同样适合揭示待求解问题的特性。 本文引入了有限维向量空间基的一种规范形式,这可能在理解问题结构时非常有用,尤其是在基出现在解决过程中的一个步骤时。 这种规范形式可以看作是满列秩矩阵的一种新规范形式。
摘要: Most algorithms constructing bases of finite-dimensional vector spaces return basis vectors which, apart from orthogonality, do not show any special properties. While every basis is sufficient to define the vector space, not all bases are equally suited to unravel properties of the problem to be solved. In this paper a normal form for bases of finite-dimensional vector spaces is introduced which may prove very useful in the context of understanding the structure of the problem in which the basis appears in a step towards the solution. This normal form may be viewed as a new normal form for matrices of full column rank.
评论: 24页,5图
主题: 数值分析 (math.NA)
引用方式: arXiv:2306.10415 [math.NA]
  (或者 arXiv:2306.10415v1 [math.NA] 对于此版本)
  https://doi.org/10.48550/arXiv.2306.10415
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Patrick Otto Ludl [查看电子邮件]
[v1] 星期六, 2023 年 6 月 17 日 19:59:38 UTC (344 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.NA
< 上一篇   |   下一篇 >
新的 | 最近的 | 2023-06
切换浏览方式为:
cs
cs.NA
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号