Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > hep-lat > arXiv:2311.15046

帮助 | 高级搜索

高能物理 - 格点

arXiv:2311.15046 (hep-lat)
[提交于 2023年11月25日 ]

标题: 关于手征旋转薛定谔泛函的$N_\rm{f}=3$QCD 张量算符的非微扰跑动

标题: Nonperturbative running of the tensor operator for $N_\rm{f}=3$ QCD from the chirally rotated Schrödinger Functional

Authors:Isabel Campos Plasencia, Mattia Dalla Brida, Giulia Maria de Divitiis, Andrew Lytle, Mauro Papinutto, Ludovica Pirelli, Anastassios Vladikas
摘要: We study the Renormalisation Group (RG) running of the non-singlet tensor operator, for $N_\mathrm{\scriptstyle f}=3$ QCD with Wilson fermions in a mixed action setup, with standard Schrödinger Functional (SF) boundary conditions for sea quarks and chirally rotated Schrödinger Functional ($\chi$SF) boundary conditions for valence quarks. Based on a recursive finite-size scaling technique we compute non-perturbatively the tensor step-scaling function for an energy range between a hadronic scale and an electroweak scale, above which perturbation theory may be safely applied. Our result is expressed as the RG-running factor $T^{\mathrm{RGI}}/[ T(\mu_{\mathrm{had}})]_{\scriptstyle \rm R}$, where the numerator is the scale independent (Renormalisation Group Invariant - RGI) tensor operator and the denominator is its renormalised counterpart at a hadronic scale $\mu_{\mathrm{had}} = 233(8)$~MeV in a given scheme. We determine the step-scaling function in four distinct renormalisation schemes. We also compute the renormalisation parameters of these schemes at $\mu_{\mathrm{had}}$ which, combined with the RG-running factor, gives the scheme-independent quantity $Z^{\mathrm{RGI}}_{\mathrm T}(g_0^2)$ in four schemes and for a range of bare gauge couplings in which large volume hadronic matrix element simulations are performed by the CLS consortium in $N_\mathrm{\scriptstyle f}=2+1$ QCD. All four results are compatible and also agree with a recent determination based on a unitary setup for Wilson quarks with Schrödinger Functional boundary conditions~arXiv:2309.04314 . This provides a strong universality test.
摘要: We study the Renormalisation Group (RG) running of the non-singlet tensor operator, for $N_\mathrm{\scriptstyle f}=3$ QCD with Wilson fermions in a mixed action setup, with standard Schr\"odinger Functional (SF) boundary conditions for sea quarks and chirally rotated Schr\"odinger Functional ($\chi$SF) boundary conditions for valence quarks. Based on a recursive finite-size scaling technique we compute non-perturbatively the tensor step-scaling function for an energy range between a hadronic scale and an electroweak scale, above which perturbation theory may be safely applied. Our result is expressed as the RG-running factor $T^{\mathrm{RGI}}/[ T(\mu_{\mathrm{had}})]_{\scriptstyle \rm R}$, where the numerator is the scale independent (Renormalisation Group Invariant - RGI) tensor operator and the denominator is its renormalised counterpart at a hadronic scale $\mu_{\mathrm{had}} = 233(8)$~MeV in a given scheme. We determine the step-scaling function in four distinct renormalisation schemes. We also compute the renormalisation parameters of these schemes at $\mu_{\mathrm{had}}$ which, combined with the RG-running factor, gives the scheme-independent quantity $Z^{\mathrm{RGI}}_{\mathrm T}(g_0^2)$ in four schemes and for a range of bare gauge couplings in which large volume hadronic matrix element simulations are performed by the CLS consortium in $N_\mathrm{\scriptstyle f}=2+1$ QCD. All four results are compatible and also agree with a recent determination based on a unitary setup for Wilson quarks with Schr\"odinger Functional boundary conditions~arXiv:2309.04314 . This provides a strong universality test.
评论: 35页,28幅图
主题: 高能物理 - 格点 (hep-lat)
引用方式: arXiv:2311.15046 [hep-lat]
  (或者 arXiv:2311.15046v1 [hep-lat] 对于此版本)
  https://doi.org/10.48550/arXiv.2311.15046
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Ludovica Pirelli [查看电子邮件]
[v1] 星期六, 2023 年 11 月 25 日 14:50:18 UTC (3,259 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
hep-lat
< 上一篇   |   下一篇 >
新的 | 最近的 | 2023-11

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号