高能物理 - 格点
[提交于 2023年11月25日
]
标题: 关于手征旋转薛定谔泛函的$N_\rm{f}=3$QCD 张量算符的非微扰跑动
标题: Nonperturbative running of the tensor operator for $N_\rm{f}=3$ QCD from the chirally rotated Schrödinger Functional
摘要: We study the Renormalisation Group (RG) running of the non-singlet tensor operator, for $N_\mathrm{\scriptstyle f}=3$ QCD with Wilson fermions in a mixed action setup, with standard Schrödinger Functional (SF) boundary conditions for sea quarks and chirally rotated Schrödinger Functional ($\chi$SF) boundary conditions for valence quarks. Based on a recursive finite-size scaling technique we compute non-perturbatively the tensor step-scaling function for an energy range between a hadronic scale and an electroweak scale, above which perturbation theory may be safely applied. Our result is expressed as the RG-running factor $T^{\mathrm{RGI}}/[ T(\mu_{\mathrm{had}})]_{\scriptstyle \rm R}$, where the numerator is the scale independent (Renormalisation Group Invariant - RGI) tensor operator and the denominator is its renormalised counterpart at a hadronic scale $\mu_{\mathrm{had}} = 233(8)$~MeV in a given scheme. We determine the step-scaling function in four distinct renormalisation schemes. We also compute the renormalisation parameters of these schemes at $\mu_{\mathrm{had}}$ which, combined with the RG-running factor, gives the scheme-independent quantity $Z^{\mathrm{RGI}}_{\mathrm T}(g_0^2)$ in four schemes and for a range of bare gauge couplings in which large volume hadronic matrix element simulations are performed by the CLS consortium in $N_\mathrm{\scriptstyle f}=2+1$ QCD. All four results are compatible and also agree with a recent determination based on a unitary setup for Wilson quarks with Schrödinger Functional boundary conditions~arXiv:2309.04314 . This provides a strong universality test.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.