数学 > 微分几何
[提交于 2024年6月26日
(v1)
,最后修订 2024年12月17日 (此版本, v2)]
标题: 伯威尔德$m$-克普林空间的任意符号:可度量化性和里奇平坦性
标题: Berwald $m$-Kropina Spaces of Arbitrary Signature: Metrizability and Ricci-Flatness
摘要: The (pseudo-)Riemann-metrizability and Ricci-flatness of Finsler spaces with $m$-Kropina metric $F = \alpha^{1+m}\beta^{-m}$ of Berwald type are investigated. We prove that the affine connection on $F$ can locally be understood as the Levi-Civita connection of some (pseudo-)Riemannian metric if and only if the Ricci tensor of the canonical affine connection is symmetric. We also obtain a third equivalent characterization in terms of the covariant derivative of the 1-form $\beta$. We use these results to classify all locally metrizable $m$-Kropina spaces whose 1-forms have a constant causal character. In the special case where the first de Rahm cohomology group of the underlying manifold is trivial (which is true of simply connected manifolds, for instance), we show that global metrizability is equivalent to local metrizability and hence, in that case, our necessary and sufficient conditions also characterize global metrizability. In addition, we further obtain explicitly all Ricci-flat, locally metrizable $m$-Kropina metrics in $(3+1)$D whose 1-forms have a constant causal character. 事实上,唯一的可能性基本上如下两种:要么$\alpha$是平坦的且$\beta$是$\alpha$-平行的;要么$\alpha$是一个pp波且$\beta$是$\alpha$-平行的。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.