数学 > 偏微分方程分析
[提交于 2024年12月9日
(v1)
,最后修订 2024年12月17日 (此版本, v2)]
标题: 第一特征值的最小化问题对于Lamé系统
标题: Minimization of the first eigenvalue for the Lamé system
摘要: In this article, we address the problem of determining a domain in $\mathbb{R}^N$ that minimizes the first eigenvalue of the Lamé system under a volume constraint. We begin by establishing the existence of such an optimal domain within the class of quasi-open sets, showing that in the physically relevant dimensions $N = 2$ and $3$, the optimal domain is indeed an open set. Additionally, we derive both first and second-order optimality conditions. Leveraging these conditions, we demonstrate that in two dimensions, the disk cannot be the optimal shape when the Poisson ratio is below a specific threshold, whereas above this value, it serves as a local minimizer. We also extend our analysis to show that the disk is nonoptimal for Poisson ratios $\nu$ satisfying $\nu \leq 0.4$.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.