Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2412.11235

帮助 | 高级搜索

数学 > 交换代数

arXiv:2412.11235 (math)
[提交于 2024年12月15日 ]

标题: 关于最大极小项通用链接的符号幂

标题: Symbolic powers of the generic linkage of maximal minors

Authors:Vaibhav Pandey, Matteo Varbaro
摘要: 设 $I$ 是由一个不定元矩阵 $X$ 的最大子式生成的理想,并令 $J$ 表示 $I$ 的通用链接,即最一般的链接。理想 $J$ 的生成元未知。 We provide an explicit description of the lead terms of the generators of $J$ using Gröbner degeneration: For a carefully chosen term order, the reduced Gröbner basis of the generic link $J$ is a minimal set of its generators and the initial ideal of $J$ is squarefree. We leverage this description of the initial ideal to establish the equality of the symbolic and ordinary powers of $J$. Our analysis of the initial ideal readily yields the Gorenstein property of the associated graded ring of $J$, and, in positive characteristic, the $F$-rationality of the Rees algebra of $J$. 利用$F$-分裂滤过技术,我们进一步得到了$J$的爆分代数的$F$-正则性。
摘要: Let $I$ be the ideal generated by the maximal minors of a matrix $X$ of indeterminates over a field and let $J$ denote the generic link, i.e., the most general link, of $I$. The generators of the ideal $J$ are not known. We provide an explicit description of the lead terms of the generators of $J$ using Gr\"obner degeneration: For a carefully chosen term order, the reduced Gr\"obner basis of the generic link $J$ is a minimal set of its generators and the initial ideal of $J$ is squarefree. We leverage this description of the initial ideal to establish the equality of the symbolic and ordinary powers of $J$. Our analysis of the initial ideal readily yields the Gorenstein property of the associated graded ring of $J$, and, in positive characteristic, the $F$-rationality of the Rees algebra of $J$. Using the technique of $F$-split filtrations, we further obtain the $F$-regularity of the blowup algebras of $J$.
评论: 25页,4幅图;欢迎评论!
主题: 交换代数 (math.AC) ; 代数几何 (math.AG)
MSC 类: 13C40, 13A35, 13A30, 14M06 (Primary) 14M10 ( Secondary)
引用方式: arXiv:2412.11235 [math.AC]
  (或者 arXiv:2412.11235v1 [math.AC] 对于此版本)
  https://doi.org/10.48550/arXiv.2412.11235
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Vaibhav Pandey [查看电子邮件]
[v1] 星期日, 2024 年 12 月 15 日 16:20:47 UTC (460 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
math.AC
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-12
切换浏览方式为:
math
math.AG

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号