数学 > 一般拓扑
[提交于 2025年8月6日
]
标题: 距离泛函在重度量下的一致收敛性和超空间拓扑的下确界
标题: Uniform convergence of distance functionals under remetrization and infima of hyperspace topologies
摘要: The objective of this paper is twofold. In the first half of the paper, we investigate upper parts of the hyperspace convergences determined by uniform convergence of distance functionals on a bornology under different metrizations of a metrizable space. To do this, a new covering property associated with the underlying bornology is introduced. An independent study of this new covering notion in relation to some well-known notions, such as strong uniform continuity, is also presented. In the second half, we study the infima of hyperspace convergences (induced by distance functionals) determined by a family of (uniformly) equivalent metrics. In particular, we establish the existence of the minimum element for the collection of upper Attouch-Wets convergences corresponding to all equivalent metrics on a metrizable space $X$. We show that such a minimum element exists if and only if $X$ has a compatible Heine-Borel metric. Our findings give several new insights into the theory of hyperspace convergences.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.