Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math.RT

帮助 | 高级搜索

表示理论

  • 新提交
  • 交叉列表
  • 替换

查看 最近的 文章

显示 2025年07月21日, 星期一 新的列表

总共 21 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有

新提交 (展示 7 之 7 条目 )

[1] arXiv:2507.13521 [中文pdf, pdf, html, 其他]
标题: 关于张量空间自同构的备注
标题: A remark on automorphisms of tensor spaces
Alessandro Danelon, Andrew Snowden
评论: 5页
主题: 表示理论 (math.RT)

张量空间是一个带有有限多个多重线性形式的向量空间。 近年来,关于无限维张量空间的丰富理论已经出现。 在本文中,我们表明,许多排列群可以作为这些张量空间的自同构群出现。 利用这一点,我们表明,张量空间在其自同构群的表示下可能表现出某种程度的病态。

A tensor space is a vector space equipped with a finite collection of multi-linear forms. In recent years, a rich theory of infinite dimensional tensor spaces has emerged. In this note, we show that a large class of permutation groups can occur as the automorphism groups of such tensor spaces. Using this, we show that a tensor space can behave somewhat pathologically as a representation of its automorphism group.

[2] arXiv:2507.13930 [中文pdf, pdf, 其他]
标题: 抛物型几何艾森斯坦级数和常数项函子
标题: Parabolic geometric Eisenstein series and constant term functors
Joakim Faergeman, Andreas Hayash
评论: 欢迎提出评论!
主题: 表示理论 (math.RT) ; 代数几何 (math.AG)

我们证明了在几何卡塞尔曼-沙利卡等价下,Whittaker层的抛物限制与表示的限制之间存在相容性。 为此,我们在几何Eisenstein级数函子上建立了各种Hecke结构,推广了Braverman-Gaitsgory在主抛物情况下的结果。 此外,我们通过Koszul对偶关系将紧化和非紧化的几何Eisenstein级数函子联系起来。 我们简要证明了谱到自守的几何朗兰兹函子与常数项函子是可交换的。

We prove a compatibility between parabolic restriction of Whittaker sheaves and restriction of representations under the geometric Casselman-Shalika equivalence. To do this, we establish various Hecke structures on geometric Eisenstein series functors, generalizing results of Braverman-Gaitsgory in the case of a principal parabolic. Moreover, we relate compactified and non-compactified geometric Eisenstein series functors via Koszul duality. We sketch a proof that the spectral-to-automorphic geometric Langlands functor commutes with constant term functors.

[3] arXiv:2507.13945 [中文pdf, pdf, 其他]
标题: 温和代数的带和弦族的退化
标题: Degenerations of families of bands and strings for gentle algebras
Judith Marquardt
评论: 33页
主题: 表示理论 (math.RT) ; 组合数学 (math.CO)

设$A$为一个温和代数。 对于每组字符串和环形图示,我们考虑包含所有具有此基础图示的模的表示簇的可构造子集。 我们研究这些集合的退化情况。 我们证明这些集合由称为$h$-向量的整数向量定义,这些向量与同态序的一种限制版本相关。 我们提供了存在退化性的组合准则,涉及移除一个箭头或解决一种称为“到达”的配置类型。

Let $A$ be a gentle algebra. For every collection of string and band diagrammes, we consider the constructible subset of the variety of representations containing all modules with this underlying diagramme. We study degenerations of such sets. We show that these sets are defined by vectors of integers which we call $h$-vectors and which are related to a restricted version of the hom-order. We provide combinatorial criteria for the existence of a degeneration, involving the removal of an arrow or the resolving of a type of configuration called "reaching".

[4] arXiv:2507.13980 [中文pdf, pdf, 其他]
标题: Borel--Serre 型边界化和环群的规范对
标题: Borel--Serre type bordifications and Canonical Pairs for Loop groups
Manish M. Patnaik, Punya Plaban Satpathy
评论: 欢迎评论
主题: 表示理论 (math.RT) ; 代数拓扑 (math.AT) ; 群论 (math.GR) ; 数论 (math.NT)

针对实环群的(正半部分)对称空间,我们附加了一个类似Borel--Serre的边界化,并为其配备了一个Hausdorff拓扑。 附加的边界由环群的某些有理抛物线索引,被证明同伦于一个仿射的、有理的Tits建筑。 还证明了环群的一个类似数论群的结构在边界化上连续作用,其商通过H. Garland的约化理论进行研究。 虽然商不再是紧致的(与有限维情况下的Borel--Serre构造不同),但我们将其非紧性与环群的中心联系起来。 我们还引入了环群的半稳定性概念,这受到Harder--Narasimhan、Behrend以及最近的Chaudouard工作的启发,并利用这一概念描述了我们的环对称空间的划分。 该划分随后与有理边界化及其商相关联。

To the symmetric space of the (positive half) of a real loop group, we attach a Borel--Serre type bordification and equip it with a Hausdorff topology. The attached boundary, indexed by certain rational parabolics of the loop group, is shown to be homotopic to an affine, rational Tits building. A loop analogue of an arithmetic group is also shown to act continuously on the bordification and its quotient by this action is studied using the reduction theory of H. Garland. While the quotient is no longer compact (as in the Borel--Serre construction from finite-dimensions) we relate the non-compactness to the center of the loop group. We also introduce a notion of semi-stability for loop groups, following works of Harder--Narasimhan, Behrend, and most recently Chaudouard, and use this to describe a partition of our loop symmetric space. This partition is then related to the rational bordification and its quotient.

[5] arXiv:2507.13996 [中文pdf, pdf, html, 其他]
标题: 在$\hat{Z}$不变量之后嵌套
标题: Nesting behind $\hat{Z}$-invariants
Shoma Sugimoto
评论: 8页
主题: 表示理论 (math.RT) ; 几何拓扑 (math.GT) ; 量子代数 (math.QA)

在arXiv:2501.12985的精神下,我们提出了一种对负定分枝3-流形的$\hat{Z}$不变量的阿贝尔范畴化。它为这些$3$流形与对数VOA之间的预期字典提供了蓝图;即,通过3d-3d对应关系,3d$\mathcal{N}=2$理论的贡献在假想的对数VOA模的阿贝尔范畴中以递归二进制编码,并通过Feigin--Tipunin构造理论的递归应用进行解码。特别是,嵌套的Weyl型特征公式提供了重构$\hat{Z}$的广义特征。我们的理论还意味着在新方向上对W代数的广泛扩展。

In the spirit of arXiv:2501.12985, we propose an abelian categorification of $\hat{Z}$-invariants for negative definite plumbed 3-manifolds. It provides a blueprint for the expected dictionary between these $3$-manifolds and log VOAs; that is, the contribution from 3d $\mathcal{N}=2$ theory via 3d-3d correspondence is recursively binary encoded in the abelian category of modules over the hypothetical log VOA, and is decoded by the recursive application of the theory of Feigin--Tipunin construction. In particular, the nested Weyl-type character formulas provide generalized characters reconstructing $\hat{Z}$. Our theory also implies vast extensions of W-algebras in a new direction.

[6] arXiv:2507.14026 [中文pdf, pdf, 其他]
标题: 克罗内克系数、晶体和双表
标题: Kronecker Coefficients, Crystals, and Bitableaux
Nate Harman, Alexander N. Wilson
评论: 27页
主题: 表示理论 (math.RT) ; 组合数学 (math.CO)

克罗内克系数的组合解释可能是什么样子的呢? 我们引入了一类称为双表的组合对象,我们认为它们是一个自然的候选,并提出了一个纯粹的组合问题,如果解决这个问题,将给出克罗内克系数的组合解释。 我们在这一问题上取得了一些部分进展——足以提取出在单项基下克罗内克乘积的组合展开式。 我们还解释了在这个框架下,寻找克罗内克系数的组合解释可以被视为寻找RSK和对偶RSK插入算法的推广。

What might a combinatorial interpretation of the Kronecker coefficients even look like? We introduce a class of combinatorial objects called bitableaux, which we believe are a natural candidate, and we formulate a purely combinatorial problem which if resolved would give a combinatorial interpretation of the Kronecker coefficients. We make some partial progress on this problem -- enough to extract a combinatorial expansion for a Kronecker product of Schur functions in the monomial basis. We also explain how in this framework finding a combinatorial interpretation for Kronecker coefficients can be thought of as looking for a generalization of the RSK and dual RSK insertion algorithms.

[7] arXiv:2507.14078 [中文pdf, pdf, html, 其他]
标题: Young模的构造及类型$C$的Brauer代数的滤链乘数
标题: Construction of Young modules and filtration multiplicities for Brauer algebras of type $C$
Sulakhana Chowdhury, Geetha Thangavelu
评论: 21页
主题: 表示理论 (math.RT)

在本文中,我们通过扩展超八面体群的群代数表示理论,构建了类型$C$的Brauer代数的置换模和Young模。 此外,我们为类型$C$的Brauer代数开发了一个分层系统,从而扩展了Hemmer-Nakano在\cite{HN}中对Hecke代数的工作。 这个框架使我们能够确定在任何滤链中细胞模的重数是否定义良好。 作为结果,我们证明了如果域的特征既不是$2$也不是$3$,那么类型$C$的Brauer代数的每个置换模都可以分解为不可约Young模的直和。 我们还建立了超八面体群的群代数的一些上同调条件,这些条件是证明类型$C$的Brauer代数结果所必需的。

In this paper, we construct the permutation modules and Young modules for Brauer algebras of type $C$ by extending the representation theory of the group algebra of hyperoctahedral groups. Additionally, we develop a stratifying system for Brauer algebras of type $C$, thereby extending the work of Hemmer-Nakano in \cite{HN} on Hecke algebras. This framework allows us to determine when the multiplicities of cell modules in any filtration are well-defined. As a result, we prove that if the characteristic of the field is neither $2$ nor $3$, then every permutation module of the Brauer algebra of type $C$ decomposes into a direct sum of indecomposable Young modules. We also establish certain cohomological criteria for the group algebra of the hyperoctahedral groups, which are necessary to prove the results for the Brauer algebras of type $C$.

交叉提交 (展示 4 之 4 条目 )

[8] arXiv:2507.13473 (交叉列表自 math.NT) [中文pdf, pdf, 其他]
标题: 高Siegel--Weil公式对于酉群II:余维一项
标题: Higher Siegel--Weil formula for unitary groups II: corank one terms
Tony Feng, Benjamin Howard, Mikayel Mkrtchyan
主题: 数论 (math.NT) ; 代数几何 (math.AG) ; 表示理论 (math.RT)

我们证明了针对\emph{余秩一}项的高阶 Siegel--Weil 公式,该公式将以下两点联系起来:(1) Siegel--Eisenstein 系列的秩为一的 Fourier 系数的$r^{\rm th}$中心导数,以及 (2) 在带有$r$条腿的 Hermitian shtukas 模栈上虚拟维数为 0 的特殊循环的次数。值得注意的是,该公式对所有$r$都成立,无论 Eisenstein 系列的零点阶数如何。这扩展了 Feng--Yun--Zhang 的早期工作,他们证明了非奇异(秩为零)项的高阶 Siegel--Weil 公式。

We prove the higher Siegel--Weil formula for \emph{corank one} terms, relating (1) the $r^{\rm th}$ central derivatives of corank one Fourier coefficients of Siegel--Eisenstein series, and (2) the degrees of special cycles of virtual dimension 0 on the moduli stack of Hermitian shtukas with $r$ legs. Notably, the formula holds for all $r$, regardless of the order of vanishing of the Eisenstein series. This extends earlier work of Feng--Yun--Zhang, who proved the higher Siegel--Weil formula for the non-singular (corank zero) terms.

[9] arXiv:2507.13500 (交叉列表自 math.NT) [中文pdf, pdf, html, 其他]
标题: 上同调的$p$-进Chevalley群
标题: Cohomology of $p$-adic Chevalley groups
Andrea Dotto, Bao V. Le Hung
评论: 31页
主题: 数论 (math.NT) ; 表示理论 (math.RT)

设 $G$ 是 $\mathbf{Q}_p$ 的有限无分支扩张 $K$ 的整数环上的分裂连通约化群。 在对 $G$ 的 Coxeter 数进行标准假设的情况下,我们计算 $G(\mathcal{O}_K)$ 及其 Iwahori 子群的上同调代数,其系数在 $K$ 的剩余域中。 我们的方法涉及对 Lazard 饱和 $p$ 值群理论中出现的一些分次李代数进行新的表示,并将其约化为正特征旗簇的相干上同调。 我们还考虑那些内形的$\mathrm{GL}_n(K)$,它们在稳定同伦理论中导致莫拉稳定子群。

Let $G$ be a split connected reductive group over the ring of integers of a finite unramified extension $K$ of $\mathbf{Q}_p$. Under a standard assumption on the Coxeter number of $G$, we compute the cohomology algebra of $G(\mathcal{O}_K)$ and its Iwahori subgroups, with coefficients in the residue field of $K$. Our methods involve a new presentation of some graded Lie algebras appearing in Lazard's theory of saturated $p$-valued groups, and a reduction to coherent cohomology of the flag variety in positive characteristic. We also consider the case of those inner forms of $\mathrm{GL}_n(K)$ that give rise to the Morava stabilizer groups in stable homotopy theory.

[10] arXiv:2507.13679 (交叉列表自 math.NT) [中文pdf, pdf, html, 其他]
标题: 素测地线迹的分布
标题: Distribution of prime geodesic traces
Anton Deitmar
主题: 数论 (math.NT) ; 表示理论 (math.RT)

此注释补充了Chatzakos、Harcos和Kaneko最近的一篇论文\cite{CHK}。我们使用一种类似于狄利克雷的素测地线定理,在降低分辨率的情况下改进了loc. cit.中的误差项估计。证明依赖于塞尔伯格迹公式。

This note complements a recent paper of Chatzakos, Harcos and Kaneko \cite{CHK}. We use a Dirichlet style Prime Geodesic Theorem to improve the error term estimate in loc. cit. at the cost of lowering the resolution. The proof relies on the Selberg trace formula.

[11] arXiv:2507.14033 (交叉列表自 math.CO) [中文pdf, pdf, 其他]
标题: 形状和Bruhat区间类型
标题: Shape and class of Bruhat Intervals
Gaston Burrull, Nicolas Libedinsky, Rodrigo Villegas
评论: 69页,25张图片,1张表格
主题: 组合数学 (math.CO) ; 表示理论 (math.RT)

我们通过将仿射Weyl群中的Bruhat区间视为alcoves的区域来研究它们。在类型$\widetilde{A}_2$中,我们证明每个区间等于一个广义permutohedron减去一个星形多边形,并且在类型$\widetilde{A}_n$的主房间内证明了一个更微妙的版本。受这种几何启发,我们猜想当两个Bruhat区间同构时,存在一个由分段等距实现的同构。我们在两个端点都在$\widetilde{A}_2$中时证明了这一点,并在$\widetilde{A}_n$中获得了部分结果。在证明这些结果的过程中,我们意外地发现,一个Bruhat区间中包含的大部分信息已经编码在其极小的一部分中。

We study Bruhat intervals in affine Weyl groups by viewing them as regions of alcoves. In type $\widetilde{A}_2$ we show that each interval coincides with a generalized permutohedron minus a star-shaped polygon, and we prove a subtler version inside the dominant chamber of type $\widetilde{A}_n$. Motivated by this geometry, we conjecture that whenever two Bruhat intervals are isomorphic, there exists an isomorphism realized by a piecewise isometry. We prove this when both endpoints are dominant in $\widetilde{A}_2$ and obtain partial results in $\widetilde{A}_n$. In the course of proving these results, we made the surprising observation that much of the information contained in a Bruhat interval is already encoded in a tiny portion of it.

替换提交 (展示 10 之 10 条目 )

[12] arXiv:2209.00921 (替换) [中文pdf, pdf, html, 其他]
标题: 最高权理论对于最小有限$W$-超代数及相关Whittaker范畴
标题: Highest weight theory for minimal finite $W$-superalgebras and related Whittaker categories
Yang Zeng, Bin Shu
评论: 65页。最终版本已被接受发表于《京都大学数理科学研究所出版物》
主题: 表示理论 (math.RT)

设 $\mathfrak{g}=\mathfrak{g}_{\bar0}+\mathfrak{g}_{\bar1}$ 是域 $\mathbb{C}$上的基本经典李超代数,且 $e=e_{\theta}\in\mathfrak{g}_{\bar0}$ 其中 $-\theta$是 $\mathfrak{g}$的一个极小根。 将$U(\mathfrak{g},e)$设为与对$(\mathfrak{g},e)$相关联的最小有限$W$-超代数。 在本文中,我们研究$U(\mathfrak{g},e)$的最高权理论,引入了韦尔玛模并通过对由权和层次的对组成的参数集,给出了有限维不可约模的完整同构分类。 这些韦尔玛模可以通过从$\mathfrak{osp}(1|2)$或$\mathfrak{sl}(2)$的惠特克模通过抛物诱导进一步描述,具体取决于$\textsf{r}:=\dim\mathfrak{g}(-1)_{\bar1}$的检测奇偶性。 我们随后引入并研究了对于$U(\mathfrak{g},e)$的BGG范畴$\mathcal{O}$,建立了最高权理论,作为Brundan-Goodwin-Kleshchev和Losev分别对有限$W$-代数工作的对应结果。 与非超情况相比,这里的显著差异在于当$\textsf{r}$为奇数时的情况,这是一个完全新的现象。 困难和复杂的计算正是由此产生的。

Let $\mathfrak{g}=\mathfrak{g}_{\bar0}+\mathfrak{g}_{\bar1}$ be a basic classical Lie superalgebra over $\mathbb{C}$, and $e=e_{\theta}\in\mathfrak{g}_{\bar0}$ with $-\theta$ being a minimal root of $\mathfrak{g}$. Set $U(\mathfrak{g},e)$ to be the minimal finite $W$-superalgebras associated with the pair $(\mathfrak{g},e)$. In this paper we study the highest weight theory for $U(\mathfrak{g},e)$, introduce the Verma modules and give a complete isomorphism classification of finite-dimensional irreducible modules, via the parameter set consisting of pairs of weights and levels. Those Verma modules can be further described via parabolic induction from Whittaker modules for $\mathfrak{osp}(1|2)$ or $\mathfrak{sl}(2)$ respectively, depending on the detecting parity of $\textsf{r}:=\dim\mathfrak{g}(-1)_{\bar1}$. We then introduce and investigate the BGG category $\mathcal{O}$ for $U(\mathfrak{g},e)$, establishing highest weight theory, as a counterpart of the works for finite $W$-algebras by Brundan-Goodwin-Kleshchev and Losev, respectively. In comparison with the non-super case, the significant difference here lies in the situation when $\textsf{r}$ is odd, which is a completely new phenomenon. The difficulty and complicated computation arise from there.

[13] arXiv:2303.18065 (替换) [中文pdf, pdf, html, 其他]
标题: 基本拟约化根数据和超群
标题: Basic quasi-reductive root data and supergroups
Rita Fioresi, Bin Shu
评论: 修订版
主题: 表示理论 (math.RT) ; 代数几何 (math.AG) ; 群论 (math.GR)

我们研究对$(G,Y)$,其中$G$是一个半单代数群,且$Y$是一个纯奇的$G$-超概形,询问何时一对对应于拟半单代数超群$\mathbb{G}$,即$\mathbb{G}_{\text{ev}}$与$G$同构,并且商$\mathbb{G}\slash \mathbb{G}_{\text{ev}}$与$Y$在$G$-作用下同构。 我们证明,如果$Y$满足某些条件(基本拟约化根数据),则该问题有一个由存在性和唯一性定理给出的肯定答案。相应的超群被称为基本拟约化超群,可以在同构意义下进行分类。然后我们确定在以下条件下连通的拟约化代数超群的结构:(i) 根系不包含$0$;(ii)$\mathfrak{g}:=\text{Lie}(\mathbb{G})$允许一个非退化的偶对称双线性形式。(iii) 所有奇反射都是可逆的。值得注意的是,这些超群恰好是单色类型的基本拟约化超群。

We investigate pairs $(G,Y)$, where $G$ is a reductive algebraic group and $Y$ a purely-odd $G$-superscheme, asking when a pair corresponds to a quasi-reductive algebraic supergroup $\mathbb{G}$, that is, $\mathbb{G}_{\text{ev}}$ is isomorphic to $G$, and the quotient $\mathbb{G}\slash \mathbb{G}_{\text{ev}}$ is $G$-equivariantly isomorphic to $Y$. We prove that, if $Y$ satisfies certain conditions (basic quasi-reductive root data), then the question has a positive answer given by an existence and uniqueness theorem. The corresponding supergroups are said to be basic quasi-reductive, which can be classified, up to isogeny. We then decide the structure of connected quasi-reductive algebraic supergroups provided that: (i) the root system does not contain $0$; (ii) $\mathfrak{g}:=\text{Lie}(\mathbb{G})$ admits a non-degenerate even symmetric bilinear form. (iii) all odd reflections are invertible. Remarkably, those supergroups are exactly basic quasi-reductive supergroups of monodromy type.

[14] arXiv:2401.11071 (替换) [中文pdf, pdf, html, 其他]
标题: Lie-Cartan 模块和上同调
标题: Lie-Cartan modules and cohomology
Feifei Duan, Bin Shu, Yufeng Yao, Priyanshu Chakraborty
评论: 将出现在《Publ. RIMS》上
主题: 表示理论 (math.RT)

作为[Duan-Shu-Yao]的后续,我们在这里引入一个范畴$\mathscr{LC}$,该范畴来源于在[Duan-Shu-Yao]中为多项式向量场李代数定义的BGG范畴$\mathcal{O}$。 $\mathscr{LC}$的对象是所谓的李-卡当模,它们同时具有李模结构和相容的$R$模结构($R$表示相应的多项式环)。 这个术语是自然的,它来自微分几何中的仿射联络,通过这种方式,拓扑中的结构层和几何中的向量场被整合到微分流形中。 在本文中,我们研究李-卡当模及其范畴和上同调性质。 范畴$\mathscr{LC}$是阿贝尔的,并且是一个具有深度的“最高权范畴”。 显然,范畴$\mathcal{O}$中的共标准对象集合实际上代表了范畴$\mathscr{LC}$中简单对象的同构类。 我们随后建立了该范畴的上同调(称为$\mathscr{uLC}$-上同调),扩展了Chevalley-Eilenberg上同调理论。 另一个显著的结果指出,在基本情况下$\mathfrak{g}= W(n)$,多项式代数$R$在$\mathscr{uLC}$-上同调中的扩张环$\text{Ext}^\bullet_{\mathscr{uLC}}(R,R)$同构于一般线性李代数$\mathfrak{gl}(n)$的通常上同调环$H^\bullet(\mathfrak{gl}(n))$。

As a sequel to [Duan-Shu-Yao], we introduce here a category $\mathscr{LC}$ arising from the BGG category $\mathcal{O}$ defined in [Duan-Shu-Yao] for Lie algebras of polynomial vector fields. The objects of $\mathscr{LC}$ are so-called Lie-Cartan modules which admit both Lie-module structure and compatible $R$-module structure ($R$ denotes the corresponding polynomial ring). This terminology is natural, coming from affine connections in differential geometry through which the structure sheaves in topology and the vector fields in geometry are integrated for differential manifolds. In this paper, we study Lie-Cartan modules and their categorical and cohomology properties. The category $\mathscr{LC}$ is abelian, and a ``highest weight category" with depths. Notably, the set of co-standard objects in the category $\mathcal{O}$ turns out to represent the isomorphism classes of simple objects of $\mathscr{LC}$. We then establish the cohomology for this category (called the $\mathscr{uLC}$-cohomology), extending Chevalley-Eilenberg cohomology theory. Another notable result says that in the fundamental case $\mathfrak{g}= W(n)$, the extension ring $\text{Ext}^\bullet_{\mathscr{uLC}}(R,R)$ for the polynomial algebra $R$ in the $\mathscr{uLC}$-cohomology is isomorphic to the usual cohomology ring $H^\bullet(\mathfrak{gl}(n))$ of the general linear Lie algebra $\mathfrak{gl}(n)$.

[15] arXiv:2401.14984 (替换) [中文pdf, pdf, html, 其他]
标题: 椭圆轨道的投影和分支定律
标题: Projection of Elliptic Orbits and Branching Laws
Hongyu He
主题: 表示理论 (math.RT)

设$G$为一个李群,$H\subset G$为一个闭子群。 设$\pi$为$G$的一个不可约酉表示。 在本文中,我们简要讨论轨道方法及其在分支问题$\pi|_{H}$中的应用。 我们以$(G, H)= ( U(p,q), U(p, q-1) )$的 Gan-Gross-Prasad 分支法则为例,来说明$\pro_{\f u(p, q-1)}^{\f u(p,q)} \mc O(\lambda)$与$\lambda$的离散系的分支法则之间的关系,其中$D_{\lambda}|_{U(p,q-1)}$是一个正则椭圆元素。 我们还讨论了一些关于分支法则和波前集的结果。 本文的陈述并不遵循发展的历史时间线。

Let $G$ be a Lie group, and $H\subset G$ a closed subgroup. Let $\pi$ be an irreducible unitary representation of $G$. In this paper, we briefly discuss the orbit method and its application to the branching problem $\pi|_{H}$. We use the Gan-Gross-Prasad branching law for $(G, H)= ( U(p,q), U(p, q-1) )$ as an example to illustrate the relation between $\pro_{\f u(p, q-1)}^{\f u(p,q)} \mc O(\lambda)$ and the branching law of the discrete series $D_{\lambda}|_{U(p,q-1)}$ for $\lambda$ an regular elliptic element. We also discuss some results regarding branching laws and wave front sets. The presentation of this paper does not follow the historical timeline of development.

[16] arXiv:2411.02071 (替换) [中文pdf, pdf, html, 其他]
标题: 凯莱变换在表示论中
标题: The Cayley Transform on Representations
Jingyu Lu, Ke Ye
评论: 22页,1表
主题: 表示理论 (math.RT)

经典的凯莱变换是在二次矩阵群与其李代数之间的有理映射,最早由凯莱于1846年发现。 由于其在纯数学和应用数学中的重要作用,经典的凯莱变换已经从各种角度进行了推广。 本文关注经典的凯莱变换的表示论推广。 这项工作的基本思想是经典的凯莱变换的适用性很大程度上取决于李群是如何被表示的。 目标是表征经典的凯莱变换适用的不可约表示。 为此,我们首先建立了适用于一般李群的适用性标准。 如果该群是半单的,我们进一步获得了此类表示的权图上的几何条件。 最后,我们提供了经典复单李群及其紧实形式的完整分类。 除了之前已知的例子外,$\mathrm{Spin}(8)$的自旋表示是我们列表中唯一的一个。

The classical Cayley transform is a birational map between a quadratic matrix group and its Lie algebra, which was first discovered by Cayley in 1846. Because of its essential role in both pure and applied mathematics, the classical Cayley transform has been generalized from various perspectives. This paper is concerned with a representation theoretic generalization of the classical Cayley transform. The idea underlying this work is that the applicability of the classical Cayley transform heavily depends on how the Lie group is represented. The goal is to characterize irreducible representations of a Lie group, to which the classical Cayley transform is applicable. To this end, we first establish criteria of the applicability for a general Lie group. If the group is semisimple, we further obtain a geometric condition on the weight diagram of such representations. Lastly, we provide a complete classification for classical complex simple Lie groups and their compact real forms. Except for the previously known examples, spin representations of $\mathrm{Spin}(8)$ are the only ones on our list.

[17] arXiv:1808.06851 (替换) [中文pdf, pdf, html, 其他]
标题: 布雷伊尔-梅扎德猜想关于中心除代数
标题: Breuil-Mézard conjectures for central division algebras
Andrea Dotto
评论: 接受版本
期刊参考: 算法数论 19 (2025) 213-246
主题: 数论 (math.NT) ; 表示理论 (math.RT)

我们为一个中心除法代数的单位群在$p$有理域上的局部域构造了 Breuil-Mézard 猜想的一个类比,并证明它由$\mathrm{GL}_n$的猜想所推导。 为此,我们根据 Deligne-Lusztig 理论,在这两个群的最大紧子群之间构造了一个惯性类型和 Serre 权的传递,并通过惯性 Jacquet-Langlands 对应和某些显式特征公式证明了其与模$p$简化的一致性。 我们还证明了对于$\ell$有理域系数的类似结论。

We formulate an analogue of the Breuil-M\'ezard conjecture for the group of units of a central division algebra over a $p$-adic local field, and we prove that it follows from the conjecture for $\mathrm{GL}_n$. To do so we construct a transfer of inertial types and Serre weights between the maximal compact subgroups of these two groups, in terms of Deligne-Lusztig theory, and we prove its compatibility with mod $p$ reduction, via the inertial Jacquet-Langlands correspondence and certain explicit character formulas. We also prove analogous statements for $\ell$-adic coefficients.

[18] arXiv:2111.12827 (替换) [中文pdf, pdf, html, 其他]
标题: $p$-进表示的$\mathrm{GL}_2(\mathbf{Q}_p)$限制到旁正则子群
标题: Restriction of $p$-adic representations of $\mathrm{GL}_2(\mathbf{Q}_p)$ to parahoric subgroups
Andrea Dotto
评论: 接受版本。一些更正,主要结果不变
期刊参考: 组合数学 161, 第1期 (2025)
主题: 数论 (math.NT) ; 表示理论 (math.RT)

不使用$p$-进Langlands对应,我们证明对于许多在$\mathrm{GL}_2(\mathbf{Q}_p)$上的$p$-扭模块上的有限长度光滑表示,$\mathrm{GL}_2(\mathbf{Q}_p)$-线性同态与对于抛物子群的正规化子线性同态一致。我们将该子群识别为超奇异情况下的Iwahori子群,在主系情况下的$\mathrm{GL}_2(\mathbf{Z}_p)$。 作为应用,我们将抛开子群的作用与惯性群对$\mathrm{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$的作用联系起来,并证明如果不可约巴拿赫空间表示$\Pi$对$\mathrm{GL}_2(\mathbf{Q}_p)$具有无限$\mathrm{GL}_2(\mathbf{Z}_p)$-长度,则$\Pi$的一个扭变具有局部代数向量。这回答了 Dospinescu 的一个问题。我们做出简化的假设,即$p > 3$且我们所有的表示都是通用的。

Without using the $p$-adic Langlands correspondence, we prove that for many finite length smooth representations of $\mathrm{GL}_2(\mathbf{Q}_p)$ on $p$-torsion modules the $\mathrm{GL}_2(\mathbf{Q}_p)$-linear morphisms coincide with the morphisms that are linear for the normalizer of a parahoric subgroup. We identify this subgroup to be the Iwahori subgroup in the supersingular case, and $\mathrm{GL}_2(\mathbf{Z}_p)$ in the principal series case. As an application, we relate the action of parahoric subgroups to the action of the inertia group of $\mathrm{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$, and we prove that if an irreducible Banach space representation $\Pi$ of $\mathrm{GL}_2(\mathbf{Q}_p)$ has infinite $\mathrm{GL}_2(\mathbf{Z}_p)$-length then a twist of $\Pi$ has locally algebraic vectors. This answers a question of Dospinescu. We make the simplifying assumption that $p > 3$ and that all our representations are generic.

[19] arXiv:2402.09190 (替换) [中文pdf, pdf, html, 其他]
标题: 由序嵌入定义的持久性模块的不变量
标题: Invariants of persistence modules defined by order-embeddings
Claire Amiot, Thomas Brüstle, Eric J. Hanson
评论: v2:改进了阐述并将主要结果重新标记为定理。23页
主题: 代数拓扑 (math.AT) ; 表示理论 (math.RT)

拓扑数据分析的主要目标之一是研究持久性模块的离散不变量,特别是在处理多参数持久性模块时。 在许多情况下,针对这些非全序偏序集 $P$ 所研究的不变量可以从将给定模块限制到一个子偏序集 $X$ 的 $P$ 上获得,该子偏序集是全序的(或更一般地,是有限表示类型),然后在 $X$ 上计算条形码(或一般的直和分解)。 我们在这篇论文中考虑了表示有限子偏序集$X$到$P$的一般保序嵌入,并系统地研究了通过将给定的$P$-模$M$限制到$X$并分解为其不可约和式所得的不变量。 从$\mathrm{mod}\ P$到$\mathrm{mod}\ X$的限制函子已被广泛研究,已知它是正合的,并且具有左伴随和右伴随函子,称为诱导函子和余诱导函子。 这使我们能够获得新的同调见解,并重新解释以前的结果。 我们还使用这种方法来确定这些不变量的像的基,从而推广了文献中与稳定性结果相关的符号条形码的概念。 结果表明,仅考虑将一个固定的偏序集$X$嵌入到偏序集$P$中,并研究从$X$获得的所有不可分解结构,会引入很多冗余。因此,我们还研究了多个大小递增的偏序集的迭代嵌入,同时仅关注一些不可分解结构(这些结构之前未通过较小偏序集的嵌入获得)。

One of the main objectives of topological data analysis is the study of discrete invariants for persistence modules, in particular when dealing with multiparameter persistence modules. In many cases, the invariants studied for these non-totally ordered posets $P$ can be obtained from restricting a given module to a subposet $X$ of $P$ that is totally ordered (or more generally, of finite representation type), and then computing the barcode (or the general direct sum decomposition) over $X$. We consider in this paper general order-preserving embeddings of representation-finite subposets $X$ into $P$ and study systematically the invariants obtained by decomposing the restriction of a given $P$-module $M$ to $X$ into its indecomposable summands. The restriction functor from $\mathrm{mod}\ P$ to $\mathrm{mod}\ X$ is well-studied, and it is known to be exact and admits both left and right adjoint functors, known as induction and co-induction functors. This allows us to obtain new homological insights, and also to re-interpret previous results. We use this approach also to determine bases of the image of these invariants, thus generalizing the concept of signed barcodes which is considered in the literature in relation to stability results. It turns out that considering only order-embeddings of one fixed poset $X$ into the poset $P$, and studying the set of all indecomposables obtained from $X$ introduces a lot of redundancy. We therefore also study iterated embeddings of several posets of increasing sizes, while limiting attention to only some indecomposables (that have not been obtained from embedding of smaller posets previously).

[20] arXiv:2402.16456 (替换) [中文pdf, pdf, html, 其他]
标题: 形式次数与抛物诱导:最大一般情况
标题: Formal Degrees and Parabolic Induction: the Maximal Generic Case
Yiyang Wang
主题: 数论 (math.NT) ; 表示理论 (math.RT)

我们研究了形式度猜想与抛物诱导过程在拟分裂$p$-adic 群的最简单非平凡情况下的相容性。 对于从极大 Levi 子群的一个不可约超 cuspidal$\sigma$诱导出的典型离散系列$\pi$,我们在一些假设下计算了形式度的商$d(\pi)/d(\sigma)$。 作为应用,我们验证了分裂$\mathrm{G}_2$的离散系列在极大 Levi 子群上的猜想。

We study the compatibility of the formal degree conjecture and the parabolic induction process in the simplest nontrivial case for quasi-split $p$-adic groups. For a generic discrete series $\pi$ induced from an irreducible supercuspidal $\sigma$ of a maximal Levi subgroup, we compute the quotient $d(\pi)/d(\sigma)$ of formal degrees under some assumptions. As an application, we verify the conjecture for discrete series of split $\mathrm{G}_2$ supported on maximal Levi subgroups.

[21] arXiv:2404.11381 (替换) [中文pdf, pdf, html, 其他]
标题: 秩2中的聚类散射系数
标题: Cluster scattering coefficients in rank 2
Thomas Elgin, Nathan Reading, Salvatore Stella
评论: v3:对阐述进行了小的修改和补充,以遵循匿名审稿人的建议。更新了相关工作的评论。猜想的陈述保持不变
主题: 组合数学 (math.CO) ; 代数几何 (math.AG) ; 表示理论 (math.RT)

我们提出关于二维聚类散射图的散射项的猜想,并提供了大量的计算证据支持。

We present conjectures on the scattering terms of cluster scattering diagrams of rank 2, supported by significant computational evidence.

总共 21 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号