Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:1201.0047

帮助 | 高级搜索

数学 > 偏微分方程分析

arXiv:1201.0047 (math)
[提交于 2011年12月30日 ]

标题: Lipschitz域的部分展开及其一些应用

标题: Partial expansion of a Lipschitz domain and some applications

Authors:Jay Gopalakrishnan, Weifeng Qiu
摘要: 我们证明了在一个Lipschitz域可以仅在其边界的一部分附近扩展,假设这部分由分段C1曲线围成。 扩展后的域以及扩展的部分仍然是Lipschitz的。 我们将此结果应用于证明标准向量Sobolev空间的一种正则分解,该空间在部分边界上的迹为零。 还指出了一种低正则性投影器到具有部分边界条件的有限元空间的应用。
摘要: We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C1 curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard vector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of low-regularity projectors into finite element spaces with partial boundary conditions is also indicated.
主题: 偏微分方程分析 (math.AP)
引用方式: arXiv:1201.0047 [math.AP]
  (或者 arXiv:1201.0047v1 [math.AP] 对于此版本)
  https://doi.org/10.48550/arXiv.1201.0047
通过 DataCite 发表的 arXiv DOI
期刊参考: Frontiers of Mathematics in China, 2012

提交历史

来自: Weifeng Qiu Dr. [查看电子邮件]
[v1] 星期五, 2011 年 12 月 30 日 01:24:24 UTC (28 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.AP
< 上一篇   |   下一篇 >
新的 | 最近的 | 2012-01
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号