Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2012.04695

帮助 | 高级搜索

数学 > 数论

arXiv:2012.04695 (math)
[提交于 2020年12月8日 ]

标题: PU(2)中的短路径

标题: Short paths in PU(2)

Authors:Zachary Stier
摘要: 帕尔赞切夫斯基和萨纳克最近将罗斯和塞林杰用于PU(2)对角元素分解的算法,调整为在距离$\varepsilon$内的任何PU(2)元素的高效概率算法,最多使用来自某些精心选择集合中的$3\log_p\frac{1}{\varepsilon^3}$个因子。 Clifford+$T$门是来自$p=2$的一个这样的集合。 在该设置中,我们利用卡瓦略·平托和皮埃特的最新工作,将其改进为$\frac{7}{3}\log_2\frac{1}{\varepsilon^3}$,并在 Haskell 中实现了该算法。
摘要: Parzanchevski and Sarnak recently adapted an algorithm of Ross and Selinger for factorization of PU(2)-diagonal elements to within distance $\varepsilon$ into an efficient probabilistic algorithm for any PU(2)-element, using at most $3\log_p\frac{1}{\varepsilon^3}$ factors from certain well-chosen sets. The Clifford+$T$ gates are one such set arising from $p=2$. In that setting, we leverage recent work of Carvalho Pinto and Petit to improve this to $\frac{7}{3}\log_2\frac{1}{\varepsilon^3}$, and implement the algorithm in Haskell.
主题: 数论 (math.NT) ; 群论 (math.GR)
引用方式: arXiv:2012.04695 [math.NT]
  (或者 arXiv:2012.04695v1 [math.NT] 对于此版本)
  https://doi.org/10.48550/arXiv.2012.04695
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Zachary Stier [查看电子邮件]
[v1] 星期二, 2020 年 12 月 8 日 19:28:28 UTC (13 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
查看许可
当前浏览上下文:
math.NT
< 上一篇   |   下一篇 >
新的 | 最近的 | 2020-12
切换浏览方式为:
math
math.GR

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号