数学 > 环与代数
[提交于 2025年3月15日
]
标题: 非交换泊松代数中的元素类型和迪克斯米耶猜想
标题: Types of elements in non-commutative Poisson algebras and Dixmier Conjecture
摘要: Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie algebra structure together with the Leibniz law. Let $P$ be a non-commutative Poisson algebra over some algebraically closed field of characteristic zero. For any $z\in P$, there exist four subalgebras of $P$ associated with the inner derivation $ad_z$ on $P$. Based on the relationships between these four subalgebras, elements of $P$ can be divided into eight types. We will mainly focus on two types of non-commutative Poisson algebras: the usual Poisson algebras and the associative algebras with the commutator as the Poisson bracket. The following problems are studied for such non-commutative Poisson algebras: how the type of an element changes under homomorphisms between non-commutative Poisson algebras, how the type of an element changes after localization, and what the type of the elements of the form $z_1 \otimes z_2$ and $z_1 \otimes 1 + 1 \otimes z_2$ is in the tensor product of non-commutative Poisson algebras $P_1\otimes P_2$. As an application of above results, one knows that Dixmier Conjecture for $A_1$ holds under certain conditions. Some properties of the Weyl algebras are also obtained, such as the commutativity of certain subalgebras.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.