Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > q-bio > arXiv:2501.06271

帮助 | 高级搜索

定量生物学 > 定量方法

arXiv:2501.06271 (q-bio)
[提交于 2025年1月10日 ]

标题: 生物信息学中的大型语言模型

标题: Large Language Models for Bioinformatics

Authors:Wei Ruan, Yanjun Lyu, Jing Zhang, Jiazhang Cai, Peng Shu, Yang Ge, Yao Lu, Shang Gao, Yue Wang, Peilong Wang, Lin Zhao, Tao Wang, Yufang Liu, Luyang Fang, Ziyu Liu, Zhengliang Liu, Yiwei Li, Zihao Wu, Junhao Chen, Hanqi Jiang, Yi Pan, Zhenyuan Yang, Jingyuan Chen, Shizhe Liang, Wei Zhang, Terry Ma, Yuan Dou, Jianli Zhang, Xinyu Gong, Qi Gan, Yusong Zou, Zebang Chen, Yuanxin Qian, Shuo Yu, Jin Lu, Kenan Song, Xianqiao Wang, Andrea Sikora, Gang Li, Xiang Li, Quanzheng Li, Yingfeng Wang, Lu Zhang, Yohannes Abate, Lifang He, Wenxuan Zhong, Rongjie Liu, Chao Huang, Wei Liu, Ye Shen, Ping Ma, Hongtu Zhu, Yajun Yan, Dajiang Zhu, Tianming Liu
摘要: 随着大规模语言模型(LLM)技术的快速发展以及生物信息学专用语言模型(BioLMs)的出现,对当前发展状况、计算特征和多样化应用进行全面分析的需求日益增长。 本综述旨在通过提供对BioLMs的全面回顾来满足这一需求,重点介绍其演变过程、分类及显著特征,并详细探讨训练方法、数据集和评估框架。 我们研究了BioLMs在疾病诊断、药物发现和疫苗开发等关键领域的广泛应用,突显了它们在生物信息学中的影响和变革潜力。 我们识别了BioLMs中固有的关键挑战和局限性,包括数据隐私和安全问题、可解释性问题、训练数据和模型输出中的偏见以及领域适应的复杂性。 最后,我们突出了新兴趋势和未来方向,为研究人员和临床医生提供了有价值的见解,以推动BioLMs在日益复杂的生物学和临床应用中的发展。
摘要: With the rapid advancements in large language model (LLM) technology and the emergence of bioinformatics-specific language models (BioLMs), there is a growing need for a comprehensive analysis of the current landscape, computational characteristics, and diverse applications. This survey aims to address this need by providing a thorough review of BioLMs, focusing on their evolution, classification, and distinguishing features, alongside a detailed examination of training methodologies, datasets, and evaluation frameworks. We explore the wide-ranging applications of BioLMs in critical areas such as disease diagnosis, drug discovery, and vaccine development, highlighting their impact and transformative potential in bioinformatics. We identify key challenges and limitations inherent in BioLMs, including data privacy and security concerns, interpretability issues, biases in training data and model outputs, and domain adaptation complexities. Finally, we highlight emerging trends and future directions, offering valuable insights to guide researchers and clinicians toward advancing BioLMs for increasingly sophisticated biological and clinical applications.
评论: 64页,1图
主题: 定量方法 (q-bio.QM) ; 人工智能 (cs.AI); 计算工程、金融与科学 (cs.CE)
引用方式: arXiv:2501.06271 [q-bio.QM]
  (或者 arXiv:2501.06271v1 [q-bio.QM] 对于此版本)
  https://doi.org/10.48550/arXiv.2501.06271
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Yanjun Lyu [查看电子邮件]
[v1] 星期五, 2025 年 1 月 10 日 01:43:05 UTC (591 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
q-bio.QM
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-01
切换浏览方式为:
cs
cs.AI
cs.CE
q-bio

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号